Have a personal or library account? Click to login
Open Access
|Aug 2021

References

  1. [1] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Revised and Updated Second Edition, Dover Publications, Inc., Mineola, New York, 2016.
  2. [2] A. Pressley, Elementary Differential Geometry, Second Edition, Springer-Verlag, London, 2010.10.1007/978-1-84882-891-9
  3. [3] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane? Amer. Math. Monthly, 110 (2003), 147–152.
  4. [4] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang Jour. of Math., 48 (2017), 209–214.10.5556/j.tkjm.48.2017.2382
  5. [5] B. Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica, 33 (2005), 77–90.
  6. [6] S. Deshmukh, B. Y. Chen, S. Alshamari, On rectifying curves in Euclidean 3-space, Turk. J. Math., 42 (2018), 609–620.10.3906/mat-1701-52
  7. [7] K. Ilarslan, E. Nesovic, Some characterizations of rectifying curves in the euclidean space E4, Turk. J. Math., 32(1) (2008), 21–30.10.1515/dema-2008-0421
  8. [8] S. Cambie, W. Goemans, I. V. Bussche, Rectifying curves in the n-dimensional euclidean space, Turk. J. Math. 40(1) (2016), 210–223.10.3906/mat-1502-77
  9. [9] K. Ilarslan, E. Nešović, T. M. Petrović, Some characterization of rectifying curves in the Minkowski 3-Space, Novi. Sad. Jour. Math., 33 (2003), 23–32.
  10. [10] K. Ilarslan, E. Nešović, On rectifying curves as centrodes and extremal curves in the Minkowski 3-Space 𝔼31, Novi. Sad. Jour. Math., 37 (2007), 53–64.
  11. [11] Z. Iqbal, J. Sengupta, Non-null (spacelike or timelike) f-rectifying curves in the Minkowski 3-space 𝔼31, Eurasian Bul. Math., 3 (1) (2020), 38–55.
  12. [12] Z. Iqbal, J. Sengupta, Null (lightlike) f-rectifying curves in the Minkowski 3-space 𝔼31, Fundam. J. Math. Appl. 3 (1) (2020), 8–16.10.33401/fujma.708816
  13. [13] Z. Iqbal, J. Sengupta, Differential geometric aspects of lightlike f-rectifying curves in Minkowski space-time, Diff. Geom. - Dyn. Syst., 22 (2020), 113–129.
  14. [14] H. Gluck, Higher curvatures of curves in euclidean space, Amer. Math. Mon. 73(7) (1966), 699–704.10.1080/00029890.1966.11970818
  15. [15] H. Gluck, Higher curvatures of curves in euclidean space, ii, Amer. Math. Mon. 74(9) (1967), 1049–1056.10.1080/00029890.1967.12000070
Language: English
Page range: 192 - 208
Submitted on: Jun 27, 2020
Published on: Aug 26, 2021
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Zafar Iqbal, Joydeep Sengupta, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.