Have a personal or library account? Click to login

Sums and products of intervals in ordered groups and fields

Open Access
|Aug 2021

References

  1. [1] M. J. Cloud, R. B. Kearfott, R. E. Moore, Introduction to Interval Analysis, Philadelphia: Society for Industrial and Applied Mathematics (SIAM).
  2. [2] E. Davis, Constraint propagation with interval labels. Artifical Intelligence, 32(3) (1987) 281–331.10.1016/0004-3702(87)90091-9
  3. [3]Á. Figula, Á. Száz, Graphical relationships between the infimum and intersection convolutions. Math. Pannonica, 21/1 (2010) 23–35.
  4. [4] L. Fuchs, Partially Ordered Algebraic Systems, Dover Publications, Inc. Minesota, New York. 1963.
  5. [5] R. J. Hanson, Interval arithmetic as a closed arithmetic system on a computer. Technical Memorandum 197, Jet Propulsion Laboratory, Section 314, California Institute of Technology, Pasadena, CA.
  6. [6] T. Glavosits, Zs. Karácsony, Sums and products of intervals in ordered semigroups, An. St. Univ. Ovidius Constanta, Vol. 29 (2) (2021), 187–198.10.2478/auom-2021-0025
  7. [7] T. Glavosits, Zs. Karácsony, Existence and unicity theorems for additive and logarithmic functional equations, accepted in Communications in Mathematics, 2021.
  8. [8] T. Glavosits,Á. Száz, On the existence of nonnegativity domains of subsets of groups. Demonstratio Math., 37 (2004), 505–516.
  9. [9] L. Jaulin, M. Kieffer, O. Didrit, É. Walter, Applied Interval Analysis. Springer, London, (2001).10.1007/978-1-4471-0249-6
  10. [10] W. Kahan, A more complete interval arithmetic, Lecture notes for a summer course. University of Toronto, Canada
  11. [11] R. B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht, (1996)
  12. [12] F. W. Levi, Arithmetische Gesetze im Gebiete diskreter Gruppen, Rend. Circ. Mat. Palermo, 35 (1913), 225–236.10.1007/BF03015602
  13. [13] P. Lorenzen, Abstrakte Begründung der multiplikativen Idelatheorie, Math. Z., 45 (1939), 533–553.10.1007/BF01580299
  14. [14] R. E. Moore, Automatic error analysis in digital computation. Technical Report LMSD-48421 Lockheed Missiles and Space Co, Palo Alto, CA., (1959)
  15. [15] R. E. Moore, Interval Arithmetic and Automatic Error Analysis in Digital Computing. Department Analysis, Stanford University, (1962)
  16. [16] R. E. Moore, Interval Analysis. Englewood Cliff, New Jersey, USA: Prentice-Hall., 35 (1966)
  17. [17] J. J. Moreau, Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Appl., 49 (1970) 109–154.
  18. [18] H. Simbireva, On the theory of partially ordered groups, Mat. Sb., 20 (1947), 145–178. (in Russian)
Language: English
Page range: 182 - 191
Submitted on: Aug 3, 2020
Published on: Aug 26, 2021
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Tamás Glavosits, Zsolt Karácsony, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.