Have a personal or library account? Click to login

References

  1. [1] H. Alzer, Sharp bounds for the Bernoulli numbers, Archiv der Mathematik, Vol. 74, No. 3 (2000), 207–211.
  2. [2] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal Invariants, Inequalities and Quasiconformal maps, John Wiley and Sons, New York, 1997.
  3. [3] Y. J. Bagul, On simple Jordan type inequalities, Turkish J. Ineq., Vol. 3, No. 1 (2019), 1–6.
  4. [4] Y. J. Bagul, and C. Chesneau, New sharp bounds for tangent function, Bulletin of the Allahabad Mathematical Society, Vol. 34, No. 2 (2019), 277–282.
  5. [5] B. Banjac, M. Makragić and B. Malešević, Some notes on a method for proving inequalities by computer, Results in Mathematics, Vol. 69, No. 1 (2016), 161–176.
  6. [6] M. Becker, and E. L. Stark, On a hierarchy of quolynomial inequalities for tan x, Univ., Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 602/633 (1978), 133–138.
  7. [7] J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., Vol. 17, No. 1 (1982), 15–53.
  8. [8] C.-P. Chen, and W.-S.Cheung, Sharp Cusa and Becker-Stark inequalities, J. Inequal. Appl., 2011:136 (2011), Doi: https://doi.org/10.1186/1029-242X-2011-136.10.1186/1029-242X-2011-136
  9. [9] C.-P. Chen, and N. Elezović, Sharp Redheffer-type and Becker-Stark-type inequalities with an application, Mathematical Inequalities and Applications, Vol. 21, No. 4 (2018), 1059–1078.
  10. [10] C.-P. Chen, and J. Sándor, Sharp inequalities for trigonometric and hyperbolic functions, Journal of Mathematical Inequalities, Vol. 9, No. 1 (2015), 203–217.
  11. [11] L. Debnath, C. Mortici and L. Zhu, Refinements of Jordan-Stečkin and Becker-Stark inequalities, Results. Math. Vol. 67 (2015), 207–215.10.1007/s00025-014-0405-3
  12. [12] H.-F. Ge, New sharp bounds for the Bernoulli numbers and refinement of Becker-Stark inequalities, J. Inequal. Appl., (2012), Article ID 137507, 7 pages.10.1155/2012/137507
  13. [13] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Elsevier, Seventh Edition, 2007.
  14. [14] V. Heikkala, M. K. Vamanamurthy and M. Vuorinen, Generalized elliptic integrals, Comput. Methods Funct. Theory, Vol. 9, No. 1 (2009), 75–109.
  15. [15] B. Malešević and M. Makragić, Method for Proving Some Inequalities on Mixed Trigonometric Polynomial Functions, J. Math. Inequal., Vol. 10, No. 3 (2016), 849–876.
  16. [16] Y. Nishizawa, Sharp Becker-Stark’s type inequalities with power exponential functions, J. Inequal. Appl., 2015, 402.10.1186/s13660-015-0932-9
  17. [17] F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, Journal of Computational and Applied Mathematics, Vol. 351, 1 May (2019), 1–5.10.1016/j.cam.2018.10.049
  18. [18] S. B. Stečkin, Some remarks on trigonometric polynomials, Uspekhi Matematicheskikh Nauk, Vol. 10, No. 1 (63) (1955), 159–166 (in Russian).
  19. [19] Z.-H. Yang, Y.-L. Jiang, Y.-Q. Song and Y.-M. Chu, Sharp inequalities for trigonometric functions, Abstract and Applied Analysis, Vol. 2014, Article ID 601839 (2014), 18 pages.10.1155/2014/601839
  20. [20] L. Zhu, Simple proofs of the Cusa-Huygens-type and Becker-Stark-type inequalities, Journal of Mathematical Inequalities, Vol. 7, No. 4 (2013), 563–567.
  21. [21] L. Zhu, and J.-K. Hua, Sharpening the Becker-Stark inequalities, J. Inequal. Appl., Article ID 931275 (2010).10.1155/2010/931275
Language: English
Page range: 88 - 104
Submitted on: Jul 27, 2020
Published on: Aug 26, 2021
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Yogesh J. Bagul, Marko Kostić, Christophe Chesneau, Ramkrishna M. Dhaigude, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.