Have a personal or library account? Click to login

CLT for single functional index quantile regression under dependence structure

Open Access
|Aug 2021

References

  1. [1] A. Aït Saidi, F. Ferraty and R. Kassa, Single functional index model for a time series, Revue Roumaine de Mathématique Pures Appliquées, 50 (2002), 321–330.
  2. [2] A. Aït Saidi, F. Ferraty, R. Kassa and P. Vieu, Cross-validated estimation in the single functional index model, Statistics, 42(6) (2008), 475–494.10.1080/02331880801980377
  3. [3] S. Attaouti, A. Laksaci and E. Ould-Saïd, A note on the conditional density estimate in the single functional index model, Statistics and Probability Letters, 81(1) (2011), 45–53.10.1016/j.spl.2010.09.017
  4. [4] S. Attaoui, On the Nonparametric Conditional Density and Mode Estimates in the Single Functional Index Model with Strongly Mixing Data, Sankhyã: The Indian Journal of Statistics, 76(A) (2014), 356–378.10.1007/s13171-014-0051-6
  5. [5] S. Attaoui and N. Ling, Asymptotic Results of a Nonparametric Conditional Cumulative Distribution Estimator in the single functional index Modeling for Time Series Data with Applications, Metrika, 79 (2016), 485–511.10.1007/s00184-015-0564-6
  6. [6] Z. Cai, Estimating a distribution function for censored time series data, J. Multivariate Anal., 78 (2001), 299–318.10.1006/jmva.2000.1953
  7. [7] Z. Cai, Regression quantiles for time series, Econometric Theory, 18 (2002), 169–192.10.1017/S0266466602181096
  8. [8] M. Chaouch and S. Khardani, Randomly Censored Quantile Regression Estimation using Functional Stationary Ergodic Data, Journal of Non-parametric Statistics, 27 (2015), 65–87.10.1080/10485252.2014.982651
  9. [9] P. Chaudhuri, K. Doksum and A. Samarov, On average derivative quantile regression, Ann. Statist., 25 (1997),715–744.10.1214/aos/1031833670
  10. [10] J. Dedecker, P. Doukhan, G. Lang, J.R. Leon, S. Louhichi and C. Prieur, Weak Dependence: With Examples and Applications, Lecture Notes in Statistics, 190. New York: Springer-Verlag, 2007.
  11. [11] P. Doukhan, Mixing: Properties and Examples, Lecture Notes in Statistics, 85. New York: Springer-Verlag, 1994.
  12. [12] J. L. Doob, Stochastic Processes, New York: Wiley, 1953.
  13. [13] A. El Ghouch and I. Van Keilegom, Local Linear Quantile Regression with Dependent Censored Data, Statistica Sinica, 19 (2009), 1621–1640.
  14. [14] M. Ezzahrioui and E. Ould-Saïd, Asymptotic results of a nonparametric conditional quantile estimator for functional time series, Comm. Statist. Theory and Methods., 37(16-17) (2008), 2735–2759.10.1080/03610920802001870
  15. [15] F. Ferraty, A. Rabhi and P. Vieu, Conditional quantiles for functional dependent data with application to the climatic ElNinô phenomenon, Sankhyã B, Special Issue on Quantile Regression and Related Methods, 67(2) (2005), 378–399.
  16. [16] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, Springer Series in Statistics, Springer, New York, 2006.
  17. [17] A. Gannoun, J. Saracco and K. Yu, Nonparametric prediction by conditional median and quantiles, J. Statist. Plann. Inference., 117 (2003), 207–223.10.1016/S0378-3758(02)00384-1
  18. [18] N. Kadiri, A. Rabhi and A. Bouchentouf, Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship, Journal Dependence Modeling, 6(1) (2018), 197–227.10.1515/demo-2018-0013
  19. [19] E. Kaplan and P. Meier, Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, 53 (1958), 457–481.10.1080/01621459.1958.10501452
  20. [20] J-P. Lecoutre and E. Ould-Saïd, Hazard rate estimation for strong mixing and censored processes, J. Nonparametr. Stat. 5 (1995), 83–89.10.1080/10485259508832636
  21. [21] H.Y. Liang and J. Ua-lvarez, Asymptotic Properties of Conditional Quantile Estimator for Censored Dependent Observations, Annals of the Institute of Statistical Mathematics, 63 (2011), 267–289.10.1007/s10463-009-0230-8
  22. [22] Z. Lin and C. Lu, Limit theory of mixing dependent random variables, Mathematics and its applications, Sciences Press, Kluwer Academic Publishers, Beijing, 1996.
  23. [23] N. Ling and Q. Xu, Asymptotic normality of conditional density estimation in the single index model for functional time series data, Statistics and Probability Letters, 82 (2012), 2235–2243.10.1016/j.spl.2012.08.018
  24. [24] N. Ling, Z. Li and W. Yang, Conditional density estimation in the single functional index model for α -mixing functional data, Communications in Statistics: Theory and Methods, 43(3) (2014), 441–454.10.1080/03610926.2012.664236
  25. [25] E. Masry and D. Tøjstheim, Nonparametric estimation and identification of nonlinear time series, Econometric Theor., 11 (1995), 258–289.10.1017/S0266466600009166
  26. [26] E. Masry, Nonparametric Regression Estimation for Dependent Functional Data: Asymptotic Normality, Stochastic Processes and their Applications, 115 (2005), 155–177.10.1016/j.spa.2004.07.006
  27. [27] C. Muharisa, F. Yanuar and D. Devianto, Simulation Study The Using of Bayesian Quantile Regression in Non-normal Error, Cauchy: Jurnal Matematika Murni dan Aplikasi, 5(3) (2018), 121–126.10.18860/ca.v5i3.5633
  28. [28] E. Ould-Saïd, A Strong Uniform Convergence Rate of Kernel Conditional Quantile Estimator under Random Censorship, Statistics and Probability Letters, 76 (2006), 579–586.10.1016/j.spl.2005.09.002
  29. [29] W-J. Padgett, Nonparametric Estimation Of Density And Hazard Rate Functions When Samples Are Censored, In P.R. Krishnaiah and C.R. Rao (Eds). Handbook of Statist. 7, pp. 313–331. Elsevier/North-Holland. Amsterdam. Science Publishers, 1988.10.1016/S0169-7161(88)07018-X
  30. [30] G. Roussas, Nonparametric estimation of the transition distribution function of a Markov process, Ann. Statist., 40 (1969), 1386–1400.10.1214/aoms/1177697510
  31. [31] M. Samanta, Nonparametric estimation of conditional quantiles, Statist. Probab. Lett., 7 (1989), 407–412.10.1016/0167-7152(89)90095-3
  32. [32] S. Sarmada and F. Yanuar, Quantile Regression Approach to Model Censored Data, Science and Technology Indonesia, 5(3) (2020), 79–84.10.26554/sti.2020.5.3.79-84
  33. [33] M. Tanner and W-H. Wong, The estimation of the hazard function from randomly censored data by the kernel methods, Ann. Statist., 11 (1983), 989–993.
  34. [34] I. Van-Keilegom and N. Veraverbeke, Hazard rate estimation in nonpara-metric regression with censored data, Ann. Inst. Statist. Math., 53 (2001), 730–745.10.1023/A:1014696717644
  35. [35] H. Wang and Y. Zhao, A kernel estimator for conditional t-quantiles for mixing samples and its strong uniform convergence, (in chinese), Math. Appl. (Wuhan)., 12 (1999), 123–127.
  36. [36] F. Yanuar, H. Laila and D. Devianto, The Simulation Study to Test the Performance of Quantile Regression Method With Heteroscedastic Error Variance, Cauchy: Jurnal Matematika Murni dan Aplikasi, 5(1) (2017), 36–41.10.18860/ca.v5i1.4209
  37. [37] F. Yanuar, H. Yozza, F. Firdawati, I. Rahmi, and A. Zetra, Applying Bootstrap Quantile Regression for The Construction of a Low Birth Weight Model, Makara Journal of Health Research, 23(2) (2019), 90–95.10.7454/msk.v23i2.9886
  38. [38] Y. Zhou and H. Liang, Asymptotic properties for L1 norm kernel estimator of conditional median under dependence, J. Nonparametr. Stat., 15 (2003), 205–219.10.1080/1048525031000089293
Language: English
Page range: 45 - 77
Submitted on: Aug 31, 2020
Published on: Aug 26, 2021
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Nadia Kadiri, Abbes Rabhi, Salah Khardani, Fatima Akkal, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.