Have a personal or library account? Click to login

Frames associated with shift invariant spaces on positive half line

Open Access
|Aug 2021

References

  1. [1] Abdullah, Affine and quasi-sffine frames on positive half line, J. Math. Ext., 10 (3) (2016), 47–61.
  2. [2] A. Ahmadi, A. A. Hemmat and R. R. Tousi, Shift-invariant spaces for local fields, Int. J. Wavelets Multiresolut. Inf. Process., 9 (3) (2011), 417–426.10.1142/S0219691311004122
  3. [3] S. Albeverio, S. Evdokimov, M. Skopina, p-adic multiresolution analysis and wavelet frames, J. Fourier Anal. Appl., 16 (2010), 693–714.10.1007/s00041-009-9118-5
  4. [4] A. Aldroubi, C. Cabrelli, C. Heil, K. Kornelson and U. Molter, Invariance of a shift-invariant space, J. Fourier Anal. Appl., 16 (2010), 60–75.10.1007/s00041-009-9068-y
  5. [5] M. Anastasio, C. Cabrelli and V. Paternostro, Extra invariance of shift-invariant spaces on LCA groups, J. Math. Anal. Appl., 370 (2010), 530–537.10.1016/j.jmaa.2010.05.040
  6. [6] B. Behera, Shift-invariant subspaces and wavelets on local fields, Acta Math. Hungar., 148 (2016), 157–173.10.1007/s10474-015-0558-x
  7. [7] C. de-Boor, R.A. De-Vore, and A. Ron, The structure of finitely generated shift-invariant spaces in L2(ℝd), J. Funct. Anal., 119 (1994) 37–78.
  8. [8] M. Bownik, The structure of shift-invariant subspaces of L2(ℝn), J. Funct. Anal., 177 (2000), 282–309.10.1006/jfan.2000.3635
  9. [9] C. Cabrelli and V. Paternostro, Shift-invariant spaces on LCA groups, J. Funct. Anal., 258 (2010), 2034–2059.10.1016/j.jfa.2009.11.013
  10. [10] O. Christensen, An Introduction to Frames and Riesz Bases, Second Edition, Birkhäuser, Boston, 2016.10.1007/978-3-319-25613-9
  11. [11] B. Currey, A. Mayeli and V. Oussa, Characterization of shift-invariant spaces on a class of nilpotent Lie groups with applications, J. Fourier Anal. Appl., 20 (2014), 384–400.10.1007/s00041-013-9316-z
  12. [12] R. J. Duffin and A. C. Shaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341–366.10.1090/S0002-9947-1952-0047179-6
  13. [13] Y. A. Farkov, Constructions of MRA-based wavelets and frames in Walsh analysis, Poincare J. Anal. Appl., 2 (2015), 13–36.
  14. [14] B. I. Golubov, A. V. Efimov and V. A. Skvortsov (1991), Walsh Series and Transforms: Theory and Applications, (Kluwer, Dordrecht).10.1007/978-94-011-3288-6
  15. [15] H. Helson, Lectures on Invariant Subspaces, Academic Press, London, 1964.10.1016/B978-1-4832-3207-2.50006-6
  16. [16] S. V. Kozyrev, Wavelet analysis as a p-adic spectral analysis, Izv. Akad. Nauk, Ser. Mat., 66 (2002), 149–158.10.4213/im381
  17. [17] A. Yu. Khrennikov and V. M. Shelkovich, An infinite family of p-adic non-Haar wavelet bases and pseudo-differential operators, p-Adic Numb. Ultrametr. Anal. Appl., 3 (2009) 204–216.10.1134/S2070046609030030
  18. [18] S. V. Kozyrev, p-adic pseudodifferential operators and p-adic wavelets, Theor. Math. Phys., 138 (2004), 1–42.10.1023/B:TAMP.0000018449.72502.6f
  19. [19] D. Labate, A unified characterization of reproducing systems generated by a finite family, J. Geom. Anal., 12 (2002), 469–491.10.1007/BF02922050
  20. [20] D. Li and T. Qian, Sufficient conditions for shift-invariant systems to be frames in L2(ℝn), Acta Math. Sinica, English Series., 29 (8) (2013), 1629–1636.10.1007/s10114-013-1754-7
  21. [21] D. Li G. Wu and X. Yang, Unified conditions for wavelet frames, Georgian Math. J., 18 (2011), 761–776.10.1515/GMJ.2011.0047
  22. [22] P. Manchanda and V. Sharma, Construction of vector valued wavelet packets on ℝ+ using Walsh-Fourier transform. Indian J. Pure Appl. Math., 45 (2014), 539–553.
  23. [23] S. Pilipović and S. Simić, Construction of frames for shift-invariant spaces, J. Funct. Spaces Appl., (2013) Article ID. 163814, 7 pages.10.1155/2013/163814
  24. [24] R. Radha and N.S. Kumar, Shift-invariant subspaces on compact groups, Bull. Sci. Math., 137 (2013), 485–497.10.1016/j.bulsci.2012.11.003
  25. [25] A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of L2(ℝd), Canad. J. Math., 47 (1995), 1051–1094.10.4153/CJM-1995-056-1
  26. [26] F. Schipp, W. R. Wade and P. Simon (1990), Walsh Series: An Introduction to Dyadic Harmonic Analysis, (Adam Hilger, Bristol and New York).
  27. [27] F. A. Shah, Gabor frames on a half-line, J. Contemp. Math. Anal., 47 (5) (2012), 251–260.10.3103/S1068362312050056
  28. [28] Y. Zhang, Walsh Shift-Invariant Sequences and p-adic Nonhomogeneous Dual Wavelet Frames in L2(ℝ+), Results Math., 74 111 (2019), 26 pp.10.1007/s00025-019-1034-7
Language: English
Page range: 23 - 44
Submitted on: Aug 28, 2020
Published on: Aug 26, 2021
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Owais Ahmad, Mobin Ahmad, Neyaz Ahmad, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.