[2] A. Ahmadi, A. A. Hemmat and R. R. Tousi, Shift-invariant spaces for local fields, Int. J. Wavelets Multiresolut. Inf. Process., 9 (3) (2011), 417–426.10.1142/S0219691311004122
[3] S. Albeverio, S. Evdokimov, M. Skopina, p-adic multiresolution analysis and wavelet frames, J. Fourier Anal. Appl., 16 (2010), 693–714.10.1007/s00041-009-9118-5
[4] A. Aldroubi, C. Cabrelli, C. Heil, K. Kornelson and U. Molter, Invariance of a shift-invariant space, J. Fourier Anal. Appl., 16 (2010), 60–75.10.1007/s00041-009-9068-y
[5] M. Anastasio, C. Cabrelli and V. Paternostro, Extra invariance of shift-invariant spaces on LCA groups, J. Math. Anal. Appl., 370 (2010), 530–537.10.1016/j.jmaa.2010.05.040
[11] B. Currey, A. Mayeli and V. Oussa, Characterization of shift-invariant spaces on a class of nilpotent Lie groups with applications, J. Fourier Anal. Appl., 20 (2014), 384–400.10.1007/s00041-013-9316-z
[12] R. J. Duffin and A. C. Shaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341–366.10.1090/S0002-9947-1952-0047179-6
[14] B. I. Golubov, A. V. Efimov and V. A. Skvortsov (1991), Walsh Series and Transforms: Theory and Applications, (Kluwer, Dordrecht).10.1007/978-94-011-3288-6
[17] A. Yu. Khrennikov and V. M. Shelkovich, An infinite family of p-adic non-Haar wavelet bases and pseudo-differential operators, p-Adic Numb. Ultrametr. Anal. Appl., 3 (2009) 204–216.10.1134/S2070046609030030
[20] D. Li and T. Qian, Sufficient conditions for shift-invariant systems to be frames in L2(ℝn), Acta Math. Sinica, English Series., 29 (8) (2013), 1629–1636.10.1007/s10114-013-1754-7
[22] P. Manchanda and V. Sharma, Construction of vector valued wavelet packets on ℝ+ using Walsh-Fourier transform. Indian J. Pure Appl. Math., 45 (2014), 539–553.
[23] S. Pilipović and S. Simić, Construction of frames for shift-invariant spaces, J. Funct. Spaces Appl., (2013) Article ID. 163814, 7 pages.10.1155/2013/163814