[1] D. Benard, A. Bouchet and A. Duchamp, On the Martin and Tutte polynomials, Technical Report, Département d’Informatique, Université du Maine, Le Mans, France, May 1997.
[5] T. H. Brylawski, The Tutte polynomial, part 1 : General theory. In A. Barlotti (ed). Matroid Theory and Its Applications, (C.I.M.E. 1980), Liguori, Naples, (1982), 125–275.10.1007/978-3-642-11110-5_3
[6] T. H. Brylawsky and J. Oxley, The Tutte polynomial and its applications, Matroid Application, N. L. White (Ed), Cambridge University Press, Cambridge, U.K, (1992), 123–225.10.1017/CBO9780511662041.007
[12] W. Kook, V. Reiner and D. Stanton, A convolution formula for the Tutte polynomial, J. Comb. Theo. Ser. B, 76 (2) (1999), 297–300.10.1006/jctb.1998.1888
[14] J. G. Oxley and G. Whittle, A characterization of Tutte invariants of2-polymatroids, J. Combin. Theory Ser. B59 (1993), 210–244.10.1006/jctb.1993.1067
[15] J. G. Oxley and G. Whittle, Tutte invariants for 2-polymatroids, Contemporary Mathematics 147, Graph Structure Theory, (eds. N. Robertson and P. Seymour), (1995), pp. 9–20.10.1090/conm/147/01163
[19] M. Las Vergnas, The Tutte polynomial of a morphism of matroids I. setpointed matroids and matroid perspectives, Ann. Inst. Fourier, Grenoble, 49 (3) (1999), 973–1015.10.5802/aif.1702
[23] M. Las Vergnas, Eulerian circuits of 4-valent graphs imbedded in surfaces, in L. Lovasz and V. Sos (eds), Algebraic Methods in Graph Theory, North-Holland, (1981) 451–478.
[25] T. Zaslavsky, Facing up to arrangemens: face-count formulas for partitions of spaces by hyperplanes, Published by Mem. Amer. Math. Soc., Volume 1, Issue 1 154 (1975).10.1090/memo/0154