Have a personal or library account? Click to login

Certain classes of analytic functions defined by fractional q-calculus operator

By:
Open Access
|Sep 2018

References

  1. [1] Al-Oboudi, On univalent functions defined by a generalized Sǎlǎgean operator, Int. J. Math. Sci., (25-28) 2004, 1429–1436.10.1155/S0161171204108090
  2. [2] O. Altintas and S. Owa, On subclasses of univalent functions with negative coefficients, Pusam Kyongnam Math.J., 4 (1988), 41–56.
  3. [3] S. D. Bernardi, Convex and starlike univalent functions, Transactions of the Amer. Math. Soc., 135 (1969), 429–446.10.1090/S0002-9947-1969-0232920-2
  4. [4] G. Gasper and M. Rahman, Basic Hypergeometric Series of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, Mass, USA, 1990.
  5. [5] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46 (2) (1909), 253–281.10.1017/S0080456800002751
  6. [6] A. O. Mostafa, A study on starlike and convex properties for hypergeometric functions, JIPAM, 10 (3) (2009), 8 pp.
  7. [7] S. D. Purohit and R. K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Mathematica Scandinavica., 109 (1) (2011), 55–70.10.7146/math.scand.a-15177
  8. [8] N. Ravikumar, L. Dileep and S. Latha, A note on Al-oboudi type functions, Journal of Rajastan acad.of phy. sci., 9 (2) (2010), 155–164.
  9. [9] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Mathe. Springer-Verlag, 2013 (1983), 362–372.10.1007/BFb0066543
Language: English
Page range: 178 - 188
Submitted on: May 9, 2017
Published on: Sep 10, 2018
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2018 N. Ravikumar, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.