Have a personal or library account? Click to login

On the ℒ-duality of a Finsler space with exponential metric αeβ/α

Open Access
|Sep 2018

References

  1. [1] P. L. Antonelli, Hand Book of Finsler Geometry, Kluwer Acad. Publ. FTPH, 58, 1993.10.1007/978-94-015-8194-3_3
  2. [2] D. Bao, S. S. Chern and Z. Shen, Zermelo navigation on Riemmanian manifold, J. Diff. Geom., 66 (2004), 377–435.10.4310/jdg/1098137838
  3. [3] D. Hrimiuc and H. Shimada, On the L-duality between Lagrange and Hamilton manifolds, Nonlinear World, 3 (1996), 613–641.
  4. [4] D. Hrimiuc and H. Shimada, On some special problems concerning the L-duality between Finsler and Cartan spaces, Tensor, N. S., 58 (1997), 48–61.
  5. [5] I. M. Masca, S. V. Sabau and H. Shimada, The L-dual of a Matsumoto space, Publ. Math. Debrecen, 72 (2008), 227–242.10.5486/PMD.2008.3956
  6. [6] M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaisheisha Press, Otsu, Japan, 1986.
  7. [7] M. Matsumoto, Finsler geometry in the 20th-century, In: “Handbook of Finsler Geometry”, Vol. I, II (Ed. by P. L. Antonelli), Kluwer Academic Publisher, Dordrecht/Boston/London, 2003, 557–966.
  8. [8] R. Miron, Cartan spaces in a new point of view by considering them as duals of Finsler spaces, Tensor, N. S., 46 (1987), 330–334.
  9. [9] R. Miron, The Geometry of Higher-order Lagrange Spaces, Applications to Mechanics and Physics, Kluwer Acad. Publ. FTPH, 82 (1997).10.1007/978-94-017-3338-0
  10. [10] R. Miron, The Geometry of Higher-order Hamilton Spaces, Applications to Hamiltonian Mechanics, Kluwer Acad. Publ. FTPH, 132 (2003).10.1007/978-94-010-0070-3
  11. [11] R. Miron, The Geometry of Higher-order Finsler Spaces, Applications to Hamiltonian Mechanics, Hadronic Press., Inc., USA, 1998.
  12. [12] R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces, Theory and Applications, Kluwer Acad. Publ. FTPH, 59 (1994).10.1007/978-94-011-0788-4
  13. [13] R. Miron, D. Hrimiuc, H. Shimada, S. V. Sabau, The Geometry of Hamilton and Lagrange Spaces, Kluwer Acad. Publ. FTPH, 118 (2001).10.1007/0-306-47135-3
  14. [14] S. V. Sabau and H. Shimada, Classes of Finsler spaces with (α,β)-metrics, Rep. on Math. Phys., 47 1(2001), 31-48.10.1016/S0034-4877(01)90004-7
  15. [15] G. Shanker, The L-dual of Generalized m-kropina space, J.T.S5 (2011), 15–25.10.56424/jts.v5i01.10445
  16. [16] G. Shanker, R. Yadav, The L-dual of a special Finsler space with metric ((α+β2α)$(\alpha + {{\beta ^2 } \over \alpha })$), Tensor, N. S., 73, 2(2011), 137–144.
  17. [17] G. Shanker, R. Yadav, The L-dual of generalized Matsumoto space, International Journal of Pure and Applied Mathematics, 78, 6 (2012), 867–877.
  18. [18] Z. Shen, On Landsberg (α,β)-metrics, http://www.math.iupiu.edu/~zshen/Research/papers, 2006.
Language: English
Page range: 167 - 177
Submitted on: Jun 9, 2016
Published on: Sep 10, 2018
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2018 Ramdayal Singh Kushwaha, Gauree Shanker, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.