[1] D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for aclass of star-like functions, Canad. J. Math., 22 (1970), 476–485.10.4153/CJM-1970-055-8
[3] P. L. Duren, Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, 1983.
[4] J. Dziok, R. K. Raina, J. Sokół, Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Comp. Math. Appl., 61 (2011), 2605–2613.10.1016/j.camwa.2011.03.006
[5] J. Dziok, R. K. Raina, J. Sokół, On α−convex functions related to a shell-like curve connected with Fibonacci numbers, Appl. Math. Comp., 218 (2011), 996–1002.10.1016/j.amc.2011.01.059
[7] S. S. Miller and P. T. Mocanu Differential Subordinations Theory and Applications, Series of Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York (2000).10.1201/9781482289817
[10] R. K. Raina, J. Sokół, Fekete-Szegö problem for some starlike functions related to shell-like curves, Math. Slovaca, 66 (2016), 135–140.10.1515/ms-2015-0123
[12] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (10) (2010), 1188–1192.10.1016/j.aml.2010.05.009
[13] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990–994.10.1016/j.aml.2011.11.013
[15] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (1) (2014), 169–178.10.36045/bbms/1394544302