Have a personal or library account? Click to login
Nodulation and biological nitrogen fixation in soybean (Glycine max L.) as influenced by phosphorus fertilization and arbuscular mycorrhizal inoculation Cover

Nodulation and biological nitrogen fixation in soybean (Glycine max L.) as influenced by phosphorus fertilization and arbuscular mycorrhizal inoculation

Open Access
|Dec 2020

References

  1. [1] FAOSTAT. (2017), Retrieved from: http://www.fao.org/faostat. Accessed on: 20 November 2017.
  2. [2] Sharma, S., Sayyed, R. Z., Trivedi, M. H., Gobi, T. A. (2013), Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2(1), 587.10.1186/2193-1801-2-587432021525674415
  3. [3] Bargaz, A., Ghoulam, C., Faghire, M., Attar, H. A., Drevon, J.-J. (2011), The nodule conductance to O2 diffusion increases with high phosphorus content in the Phaseolus vulgaris-rhizobia symbiosis. Symbiosis 53, 157–164.10.1007/s13199-011-0121-7
  4. [4] Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., Wani, P. A. (2010), Plant growth promotion by phosphate solubilizing fungi – Current perspective. Archives of Agronomy and Soil Science 56(1), 73–98.10.1080/03650340902806469
  5. [5] Hernández, I., Munné-Bosch, S. (2015), Linking phosphorus availability with photo-oxidative stress in plants. J. Exp. Bot. 66(10), 2889–2900.10.1093/jxb/erv05625740928
  6. [6] Sulieman, S., Schulze, J., Tran, L.-S. P. (2014), N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula under excessive nitrate or low phosphorus conditions. J. Plant Physiol. 171, 407–410.10.1016/j.jplph.2013.12.00624594392
  7. [7] Nasr Esfahani, M. N., Kusano, M., Nguyen, K. H., Watanabe, Y., Van Ha, C., Saito, K., Sulieman, S., Herrera-Estrella, L., Tran, L.-S. P. (2016), Adaptation of the symbiotic Mesorhizobium–chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism. Proc. Natl. Acad. Sci. 113, 4610–4619. DOI: 10.1073/pnas. 1609440113.10.1073/pnas
  8. [8] Sulieman, S., Tran, L.-S. P. (2015). Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Sci. 239, 36–43. DOI:10.1016/j.plantsci. 2015.06.018.10.1016/j.plantsci.2015.06.018
  9. [9] Almeida, J. P. F., Hartwig, U. A., Frehner, M., Nösberger, J., Lüscher, A. (2000). Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). Journal of Experimental Botany 51, 1289–1297. DOI: 10.1093/jexbot/51.348.1289.10.1093/jexbot/51.348.1289
  10. [10] Hernández, G., Valdés-López, O., Ramírez, M., Goffard, N., Weiller, G., Aparicio-Fabre, R., Fuentes, S. I., Erban, A., Kopka, J., Udvardi, M. K., Vance, C. P. (2009), Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol. 151, 1221–1238. DOI: 10.1104/pp.109.143842.10.1104/pp.109.143842277308919755543
  11. [11] Richardson, A. E., Simpson, R. J. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 56, 989–996. DOI: 10.1104/pp.111.175448.10.1104/pp.111.175448313595021606316
  12. [12] Naseer, M., Muhammad, D. (2014), Direct and residual effect of Hazara rock phosphate (Hrp) on wheat and succeeding maize in alkaline calcareous soils. Pak. J. Bot. 46(5), 1755–1761.
  13. [13] da Costa, E. M., de Lima, W., Oliveira-Longatti, S. M., de Souza, F. M. (2015), Phosphate-solubilising bacteria enhance Oryza sativa growth and nutrient accumulation in an oxisol fertilized with rock phosphate. Ecological Engineering 83, 380–385.10.1016/j.ecoleng.2015.06.045
  14. [14] Smith, S. E., Read, D. (2008), The symbionts forming arbuscular mycorrhizas In: Smith, S. E., Read, D. (eds.), Mycorrhizal symbiosis, 3rd edition. New York: Academic Press. 13–41.10.1016/B978-012370526-6.50003-9
  15. [15] Neumann, E., George, E. (2010), Nutrient uptake: The arbuscular mycorrhiza fungal symbiosis as a plant nutrient acquisition strategy. In: Arbuscular mycorrhizas: Physiology and function. Dordrecht: Springer Netherlands. 137–167.10.1007/978-90-481-9489-6_7
  16. [16] Bhardwaj, D., Ansari, M. W., Sahoo, R. K., Tuteja, N. (2014), Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 13(1), 10.10.1186/1475-2859-13-66
  17. [17] Berruti, A., Lumini, E., Balestrini, R., Bianciotto, V. (2016), Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Frontiers in Microbiology 6, 1–13.10.3389/fmicb.2015.01559
  18. [18] Sakariyawo, O. S., Adeyemi, N. O., Atayese, M. O., Aderibigbe S. G. (2016), Growth, assimilate partitioning and grain yield response of soybean (Glycine max L. Merrrill) varieties to carbon dioxide enrichment and arbuscular mycorrhizal fungi in the humid rainforest. Agro-Science 15, 29–40.10.4314/as.v15i2.5
  19. [19] Adeyemi, N., Sakariyawo, O., Atayese, M. (2017), Yield and yield attributes responses of soybean (Glycine max L. Merrill) to elevated CO2 and arbuscular mycorrhizal fungi inoculation in the humid transitory rainforest. Notulae Scientia Biologicae 9(2), 233–241. DOI: 10.15835/nsb9210002.10.15835/nsb9210002
  20. [20] Adeyemi, N. O., Atayese, M. O., Olubode, A. A., Akan, M. E. (2020), Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions. Journal of Plant Nutrition 43(4), 487–499. DOI: 10.1080/01904167. 2019.1685101.10.1080/01904167.2019.1685101
  21. [21] Ardakani M. R., Pietsch, G., Moghaddam, A., Raza, A., Friedel, J. K. (2009), Response of root properties to tripartite symbiosis between lucerne (Medicago sativa L.), rhizobia and mycorrhiza under dry organic farming conditions. Am. J. Agric. Biol. Sci. 4, 266–277.10.3844/ajabssp.2009.266.277
  22. [22] Antunes, P. M., De Varennes, A., Rajcan, I., Goss, M. J. (2006), Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan. Soil Biol. Biochem. 38, 1234–1242.10.1016/j.soilbio.2005.09.016
  23. [23] McLean, E. O. (1982), Soil pH and lime requirement. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (methodsofsoilan2). 199–224.10.2134/agronmonogr9.2.2ed.c12
  24. [24] Allison, L. (1965), Organic carbon. In: Black, C. A. (ed.), Methods of soil analysis. Part 2. Madison: American Society of Agronomy. 1307–1378.10.2134/agronmonogr9.2.c39
  25. [25] Jackson, M. (1962), Soil chemical analysis. New Delhi: Prentice Hall of India Pvt, Ltd.
  26. [26] Bray, R., Kurtz, L. (1945), Determination of total, organic and available forms of phosphorus in soil. Soil Science 59, 39–45.10.1097/00010694-194501000-00006
  27. [27] Murphy, J., Riley, J. P. (1962), A modified single solution method for the determination of phosphorus in natural waters. Analytical Chemical Acta 27, 31–36.10.1016/S0003-2670(00)88444-5
  28. [28] Bouyoucuos, G. (1962), Hydrometer method improved for making particle size analysis of soil. Agronomy Journal 54, 464–465.10.2134/agronj1962.00021962005400050028x
  29. [29] Giovanetti, M., Mosse, B. (1980), An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84, 489–500.10.1111/j.1469-8137.1980.tb04556.x
  30. [30] Peoples, M. B., Hebb, D. M., Gibson, A. H., Herridge, D. F. (1989), Development of the xylem ureide assay or the measurement of nitrogen fixation by pigeon pea (Cajanus cajan (1.) Millsp.). Journal of Experimental Botany 40, 535–542.10.1093/jxb/40.5.535
  31. [31] Young, E. G., Conway, C. F. (1942), On the estimation of allantoin by the rimini-schryver reaction. Journal of Biological Chemistry 142, 839–853.10.1016/S0021-9258(18)45082-X
  32. [32] Cataldo, D. A., Haroon, M., Schrader, L. E., Youngs, V. L. (1975), Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications Soil Science Plant Analysis 6, 71–80.10.1080/00103627509366547
  33. [33] Rochester, I., Peoples, M., Constable, G. A., Gault, R. (1998), Faba beans and other legumes add nitrogen to irrigated cotton cropping systems. Australian Journal of Experimental Agriculture 38, 253–260.10.1071/EA97132
  34. [34] Phillips, J. M., Hayman, D. S. (1970), Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. T. Brit. Mycol. Soc. 55, 158–161.10.1016/S0007-1536(70)80110-3
  35. [35] Olivera, M., Tejera, N., Iribarne, C., Ocaña, A., Lluch, C. (2004), Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): Effect of phosphorus. Physiol. Plant 121, 498–505. DOI: 10.1111/j.0031-9317.2004.00355.x.10.1111/j.0031-9317.2004.00355.x
  36. [36] Sulieman, S., Ha, C. V., Schulze, J., Tran, L.-S. P. (2013), Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J. Exp. Bot. 64(10), 2701–2712. DOI: 10.1093/jxb/ert122.10.1093/jxb/ert122369794023682114
  37. [37] Bargaz, A., Faghire, M., Farissi, M., Drevon, J.-J., Ghoulam, C. (2013), Oxidative stress in the root nodules of Phaseolus vulgaris is induced under conditions of phosphorus deficiency. Acta Physiol. Plant 35, 1633–1644.10.1007/s11738-012-1206-5
  38. [38] Sa, T. M., Israel, D. W. (1995), Nitrogen assimilation in nitrogen-fixing soybean plants during phosphorus deficiency. Crop Science 35(3), 814–820.10.2135/cropsci1995.0011183X003500030030x
  39. [39] Rufty, T. W., Israel, D. W., Volk, R. J., Qiu, J., Sa, T. (1993), Phosphate regulation of nitrate assimilation in soybean. Journal Experimental Botany 44, 879–891.10.1093/jxb/44.5.879
  40. [40] Ribet, J., Drevon, J. J. (1995). Increase in conductance to oxygen and in oxygen uptake of soybean nodules under limiting phosphorus nutrition. Physiol. Plant 94, 298–304.10.1111/j.1399-3054.1995.tb05315.x
  41. [41] Valentine, A. J., Benedito, V. A., Kang, Y. (2011), Legume nitrogen fixation and soil biotic stress: From physiology to genomics and beyond. Annu. Plant Rev. 42, 207–248.10.1002/9781444328608.ch9
  42. [42] Vardien, W., Mesjasz-Przybylowicz, J., Przybylowicz, W. J., Wang, Y. D., Steenkamp, E. T., Valentine, A. J. (2014), Nodules from Fynbos legume Virgilia divaricata have high functional plasticity under variable P supply levels. J. Plant Physiol. 171, 1732–1739.10.1016/j.jplph.2014.08.00525217716
  43. [43] Cely, M. V. T., de Oliveira, A. G., de Freitas, V. F., de Luca, M. B., Barazetti, A. R., dos Santos, I. M. O., Gionco, B., Garcia, G. V., Prete, C. E. C., Andrade, G. (2016), Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Frontiers in Microbiology 7, 1–9.10.3389/fmicb.2016.00720488067227303367
  44. [44] Asghari, H. R., Cavagnaro, T. R. (2011), Arbuscular mycorrhizas enhance plant interception of leached nutrients. Funct. Plant Biol. 38, 219–226.10.1071/FP10180
  45. [45] Wu, X. Q., Hou, L. L., Sheng, J. M., Ren, J. H., Zheng, L., Chen, D., Ye, J. R. (2012), Effects of ectomycorrhizal fungus Boletus edulis and mycorrhiza helper Bacillus cereus on the growth and nutrient uptake by Pinus thunbergii. Biol. Fertil. Soils 48(4), 385–391.10.1007/s00374-011-0638-1
  46. [46] Öpik, M., Vanatoa, A., Vanatoa, E., Moora, M., Davison, J., Kalwij, J. M., Reier, Ü., Zobel, M. (2010), The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188(1), 223–241.10.1111/j.1469-8137.2010.03334.x20561207
  47. [47] Balzergue. C., Puech-Pagès, V., Bécard, G., Rochange, S. F. (2010), The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J. Exp. Bot. 3, 1049–1060.10.1093/jxb/erq335
  48. [48] Chalk, P. M., Souza, R. D. F., Urquiaga, S., Alves, B. J. R., Boddey, R. M. (2006), The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biology and Biochemistry 38(9), 2944–2951.10.1016/j.soilbio.2006.05.005
  49. [49] Pellegrino, E., Bedini, S., Avio, L., Bonari, E., Giovannetti, M. (2011), Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biology and Biochemistry 43(2), 367–376.10.1016/j.soilbio.2010.11.002
  50. [50] Cozzolino, V., Di Meo, V., Piccolo, A. 2013. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. Journal of Geochemical Exploration 129, 40–44.10.1016/j.gexplo.2013.02.006
  51. [51] Williams, A., Ridgway, H. J., Norton, D. A. (2013), Different arbuscular mycorrhizae and competition with an exotic grass affect the growth of Podocarpus cunninghamii Colenso cuttings. New Forests 44(2), 183–195.10.1007/s11056-012-9309-9
Language: English
Page range: 22 - 44
Submitted on: Feb 12, 2020
Accepted on: Mar 29, 2020
Published on: Dec 28, 2020
Published by: Sapientia Hungarian University of Transylvania
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2020 Adeniyi Adebowale Soretire, Nurudeen Olatunbosun Adeyemi, Muftau Olaoye Atayese, Olalekan Suleiman Sakariyawo, Ademola Adewunmi, published by Sapientia Hungarian University of Transylvania
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.