Have a personal or library account? Click to login
Notes on Jordan type of an Artinian algebra Cover

References

  1. Altafi, Nasrin, Anthony Iarrobino, and Pedro Macias Marques. “Jordan type of an Artinian algebra, a survey.” In Lefschetz Properties-Current and New Directions, edited by Tadahito Harima et al., 1-27. Cham: Springer, 2024. Cited on 143, 144, 147 and 148.
  2. Artin, Michael. Algebra. Basel: Birkhäuser Verlag, 1993. Cited on 146 and 151.
  3. Basili, Roberta, and Anthony Iarrobino. “Pairs of commuting nilpotent matrices, and Hilbert function.” J. Algebra 320, no. 3 (2008): 1235-1254. Cited on 158.
  4. Briançon, Joël. “Description de Hilbnℂ{x,y}.” Invent. Math. 41, no. 1 (1977): 45-89. Cited on 158.
  5. Cook, David II. “The strong Lefschetz property in codimension two.” J. Commut. Algebra 6, no. 3 (2014): 323-345. Cited on 158.
  6. Harima, Tadahito, et al. The Lefschetz Properties. Heidelberg: Springer, 2013. Cited on 152, 153, 154, 156 and 157.
  7. Harima, Tadahito, et al. “The weak and strong Lefschetz properties for Artinian K-algebras.” J. Algebra 262, no. 1 (2003): 99-126. Cited on 158.
  8. Harima, Tadahito, and Junzo Watanabe. “The finite free extension of Artinian K-algebras with the strong Lefschetz property.” Rend. Sem. Mat. Univ. Padova 110 (2003): 119-146. Cited on 153 and 154.
  9. Iarrobino, Anthony. “Tangent cone of a Gorenstein singularity.” In Proceedings of the Conference on Algebraic Geometry (Berlin, 1985), edited by Herbert Kurke and Gert-Martin Greuel, 163-176. Leipzig: Teubner, 1986. Cited on 161.
  10. Iarrobino, Anthony. “The Hilbert function of a Gorenstein Artin algebra.” InCommutative Algebra, edited by David Eisenbud et al., 347-364. New York: Springer, 1989. Cited on 161.
  11. Iarrobino, Anthony. Associated Graded Algebra of a Gorenstein Artin Algebra. Mem. Amer. Math. Soc. 107, no. 514 (1994): viii+115 pp. Cited on 161 and 162.
  12. Iarrobino, Anthony, and Vassil Kanev. Power Sums, Gorenstein Algebras, and Determinantal Loci. With Appendix C by Anthony Iarrobino and Steven L. Kleiman. Berlin: Springer-Verlag, 1999. Cited on 162.
  13. Iarrobino, Anthony, and Pedro Macias Marques. “Reducibility of a family of local Artinian Gorenstein algebras.” Preprint. arXiv:2112.14664. Cited on 149 and 169.
  14. Iarrobino, Anthony, Pedro Macias Marques, and Chris McDaniel. “Artinian algebras and Jordan type.” J. Commut. Algebra 14, no. 3 (2022): 365-414. Cited on 143, 147, 152, 157, 158, 159, 160 and 161.
  15. Iarrobino, Anthony, Pedro Macias Marques, and Johanna Steinmeyer. “Jordan type and symmetric decomposition of an Artinian Gorenstein algebra.” In preparation. Cited on 160, 161 and 164.
  16. Macaulay, Francis Sowerby. The Algebraic Theory of Modular Systems. Cambridge: Cambridge University Press, 1994. Cited on 162.
  17. Meyer, Carl Dean. Matrix Analysis and Applied Linear Algebra. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2023. Cited on 146.
  18. Migliore, Juan, and Uwe Nagel. “Survey article: A tour of the weak and strong Lefschetz properties.” J. Commut. Algebra 5, no. 3 (2013): 329-358. Cited on 153.
  19. Weintraub, Steven H. Jordan Canonical Form-Theory and Practice. Cham: Springer, 2022. Cited on 151.
DOI: https://doi.org/10.2478/aupcsm-2025-0003 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 143 - 173
Submitted on: Apr 29, 2025
Accepted on: Oct 19, 2025
Published on: Nov 28, 2025
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Pedro Macias Marques, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.