References
- Abdallah, N., et al. “Lefschetz properties of some codimension three Artinian Gorenstein algebras.” J. Algebra 625 (2023): 28-45. Cited on 78.
- Altafi, N., and M. Boij. “The weak Lefschetz property of equigenerated monomial ideals.” J. Algebra 556 (2020): 136-168. Cited on 78.
- Altafi, N., and S. Lundqvist. “Monomial ideals and the failure of the strong Lefschetz property.” Collect. Math. 73, no. 3 (2022): 383-390. Cited on 78.
- Alzati, A., and R. Re. “Complete intersections of quadrics and the weak Lefschetz property.” Collect. Math. 70, no. 2 (2019): 283-294. Cited on 78 and 92.
- Atiyah, M., and I.G. MacDonald. Introduction to Commutative Algebra. Reading, MA: Addison-Wesley, 1969. Cited on 50, 53, 58 and 65.
- Bernstein, D., and A. Iarrobino. “A nonunimodal graded Gorenstein Artin algebra in codimension five.” Comm. Algebra 20 (1992): 2323-2336. Cited on 87.
- Bezerra, L., et al. “On minimal Gorenstein Hilbert functions.” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 118, no. 1 (2024): Article 29. Cited on 87.
- Bigatti, A., A.V. Geramita, and J. Migliore. “Geometric consequences of extremal behavior in a theorem of Macaulay.” Trans. Amer. Math. Soc. 346, no. 1 (1994): 203-235. Cited on 68.
- Boij, M. “Graded Gorenstein Artin algebras whose Hilbert functions have a large number of valleys.” Comm. Algebra 23 (1995): 97-103. Cited on 78 and 87.
- Boij, M., and S. Lundqvist. “A classification of the weak Lefschetz property for almost complete intersections generated by powers of general linear forms.” Algebra Number Theory 17, no. 1 (2023): 111-126. Cited on 78.
- Boij, M., et al. “The non-Lefschetz locus.” J. Algebra 505 (2018): 288-320. Cited on 78 and 81.
- Boij, M., et al. “On the weak Lefschetz property for height four equigenerated complete intersections.” Trans. Amer. Math. Soc. Ser. B 10 (2023): 1254-1286. Cited on 78 and 92.
- Boij, M., et al . “The shape of a pure O-sequence.” Mem. Amer. Math. Soc. 218 (2012). Cited on 78.
- Boij, M., et al. “On the weak Lefschetz property for Artinian Gorenstein algebras of codimension three.” J. Algebra 403 (2014): 48-68. Cited on 78, 89, 93 and 94.
- Brenner, H., and A. Kaid. “Syzygy bundles on ℙ2 and the weak Lefschetz property.” Illinois J. Math. 51, no. 4 (2007): 1299-1308. Cited on 80.
- Bruns, W., and J. Herzog. Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge: Cambridge Univ. Press, 1993. Cited on 60.
- Chiantini, L., et al. “Configurations of points in projective space and their projections.” Preprint 2022. arXiv:2209.04820. Cited on 78, 98, 100, 101 and 105.
- Chiantini, L., et al. “Geproci sets and the combinatorics of skew lines in ℙ3.” Preprint 2023. arXiv:2308.00761. Cited on 99.
- Cook, D. II, et al. “Lefschetz properties of balanced 3-polytopes.” Rocky Mountain J. Math. 48, no. 3 (2018): 769-790. Cited on 78.
- Cook, D., et al. “Line arrangements and configurations of points with an unexpected geometric property.” Compos. Math. 154, no. 10 (2018): 2150-2194. Cited on 97.
- Chiantini, L., and J. Migliore. “Almost maximal growth of the Hilbert function.” J. Algebra 431 (2015): 38-77. Cited on 68, 99 and 105.
- Chiantini, L., and J. Migliore. “Sets of points which project to complete intersections, and unexpected cones.” Trans. Amer. Math. Soc. 374, no. 4 (2021): 2581-2607. Cited on 98.
- Cook, D. II, and U. Nagel. “The weak Lefschetz property, monomial ideals, and lozenges.” Illinois J. Math. 55, no. 1 (2011): 377-395. Cited on 78.
- Cox, D., J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. 4th ed. New York: Springer, 2015. Cited on 50, 53, 55, 56, 58, 59, 107 and 108.
- Davis, E.D. “Complete intersections of codimension 2 in ℙr: The Bezout-Jacobi-Segre theorem revisited.” Rend. Sem. Mat. Univ. Politec. Torino 43, no. 4 (1985): 333-353. Cited on 68.
- Failla, G., Z. Flores, and C. Peterson. “On the weak Lefschetz property for vector bundles on ℙ2.” J. Algebra 568 (2021): 22-34. Cited on 78.
- Geramita, A.V., B. Harbourne, and J. Migliore. “Star configurations in ℙn.” J. Algebra 376 (2013): 279-299. Cited on 72.
- Gondim, R. “On higher Hessians and the Lefschetz properties.” J. Algebra 489 (2017): 241-263. Cited on 78.
- Gondim, R., and G. Zappalà. “Lefschetz properties for Artinian Gorenstein algebras presented by quadrics.” Proc. Amer. Math. Soc. 146, no. 3 (2018): 993-1003. Cited on 78.
- Gotzmann, G. “Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes.” Math. Z. 158 (1978): 61-70. Cited on 68.
- Harbourne, B., H. Schenck, and A. Seceleanu. “Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property.” J. Lond. Math. Soc. 84 (2011): 712-730. Cited on 78.
- Harbourne, B., J. Migliore, and U. Nagel. “Unexpected hypersurfaces and their consequences: A survey.” In: Lefschetz Properties: Current and New Directions, Springer INdAM Series, vol. 59 (2024): 29-58. Cited on 97.
- Harbourne, B., et al. “Unexpected hypersurfaces and where to find them.” Michigan Math. J. 70 (2021): 301-339. Cited on 78, 97 and 99.
- Harima, T. “Characterization of Hilbert functions of Gorenstein Artin algebras with the Weak Stanley Property.” Proc. Amer. Math. Soc. 123 (1995): 3631-3638. Cited on 83.
- Harima, T., et al. The Lefschetz Properties. Lecture Notes in Mathematics 2080. New York: Springer-Verlag, 2013. Cited on 50 and 78.
- Harima, T., et al. “The weak and strong Lefschetz property for Artinian K-algebras.” J. Algebra 262 (2003): 99-126. Cited on 50, 78, 79, 90 and 91.
- Hartshorne, R. Algebraic Geometry. Graduate Texts in Mathematics 52. New York: Springer-Verlag, 1977. Cited on 58, 62, 67 and 127.
- Ikeda, H. “Results on Dilworth and Rees numbers of Artinian local rings.” Jpn. J. Math. 22 (1996): 147-158. Cited on 78, 84, 85, 87 and 89.
- Ilardi, G. “Jacobian ideals, arrangements and the Lefschetz properties.” J. Algebra 508 (2018): 418-430. Cited on 78.
- Juhnke-Kubitzke, M., and R. Miró-Roig. “List of problems.” In: Lefschetz Properties: Current and New Directions, Springer INdAM Series, vol. 59 (2024): 211-225. Cited on 50.
- Macaulay, F.S. “Some properties of enumeration in the theory of modular systems.” Proc. Lond. Math. Soc. 26 (1927): 531-555. Cited on 68.
- Marangone, E. “The non-Lefschetz locus of vector bundles of rank 2 over ℙ2.” J. Algebra 630 (2023): 297-316. Cited on 78 and 81.
- Marangone, E. “Some notes and corrections of the paper ’The non-Lefschetz locus’.” J. Algebra 631 (2023): 106-119. Cited on 78 and 81.
- Marangone, E. “Jumping conics and Lefschetz property of vector bundles of rank 2 over ℙ2.” In preparation. Cited on 78, 81 and 91.
- Migliore, J. “Geometric invariants for liaison of space curves.” J. Algebra 99 (1986): 548-572. Cited on 78 and 81.
- Migliore, J. Introduction to Liaison Theory and Deficiency Modules. Progress in Mathematics 165. Basel: Birkhäuser, 1998. Cited on 73 and 82.
- Migliore, J., and R. Miró-Roig. “On the strong Lefschetz problem for uniform powers of general linear forms in k[x, y, z].” Proc. Amer. Math. Soc. 146, no. 2 (2018): 507-523. Cited on 78.
- Migliore, J., R. Miró-Roig, and U. Nagel. “Monomial ideals, almost complete intersections and the weak Lefschetz property.” Trans. Amer. Math. Soc. 363, no. 1 (2011): 229-257. Cited on 78, 79, 80 and 131.
- Migliore, J., R. Miró-Roig, and U. Nagel. “On the weak Lefschetz property for powers of linear forms.” Algebra Number Theory 6 (2012): 487-526. Cited on 78.
- Migliore, J., and U. Nagel. “A tour of the weak and strong Lefschetz properties.” J. Commut. Algebra 5 (2013): 329-358. Cited on 50 and 78.
- Migliore, J., and U. Nagel. “Gorenstein algebras presented by quadrics.” Collect. Math. 64, no. 2 (2013): 211-233. Cited on 78.
- Migliore, J., and U. Nagel. “The Lefschetz question for ideals generated by powers of linear forms in few variables.” J. Commut. Algebra 13, no. 3 (2021): 381-405. Cited on 78.
- Migliore, J., U. Nagel, and F. Zanello. “A characterization of Gorenstein Hilbert functions in codimension four with small initial degree.” Math. Res. Lett. 15 (2008): 331-349. Cited on 86.
- Migliore, J., U. Nagel, and F. Zanello. “On the degree two entry of a Gorenstein h-vector and a conjecture of Stanley.” Proc. Amer. Math. Soc. 136 (2008): 2755-2762. Cited on 87.
- Migliore, J., U. Nagel, and F. Zanello. “Bounds and asymptotic minimal growth for Gorenstein Hilbert functions.” J. Algebra 321 (2009): 1510-1521. Cited on 87.
- Migliore, J., and F. Zanello. “Stanley’s nonunimodal Gorenstein h-vector is optimal.” Proc. Amer. Math. Soc. 145 (2017): 1-9. Cited on 86.
- Migliore, J., and F. Zanello. “The Hilbert functions which force the weak Lefschetz property.” J. Pure Appl. Algebra 210 (2007): 465-471. Cited on 84.
- Migliore, J., and F. Zanello. “Unimodal Gorenstein h-vectors without the Stanley-Iarrobino property.” Comm. Algebra 46 (2018): 2054-2062. Cited on 84, 87 and 133.
- Miró-Roig, R., and Q.H. Tran. “On the weak Lefschetz property for almost complete intersections generated by uniform powers of general linear forms.” J. Algebra 551 (2020): 209-231. Cited on 78.
- Rao, A.P. “Liaison among curves in ℙ3.” Invent. Math. 50, no. 3 (1978/79): 205-217. Cited on 82.
- Reid, L., L. Roberts, and M. Roitman. “On complete intersections and their Hilbert functions.” Canad. Math. Bull. 34 (1991): 525-535. Cited on 89.
- Schenck, H. Computational Algebraic Geometry. London Mathematical Society Student Texts 58. Cambridge: Cambridge Univ. Press, 2003. Cited on 50.
- Schenck, H., and A. Seceleanu. “The weak Lefschetz property and powers of linear forms in K[x, y, z].” Proc. Amer. Math. Soc. 138 (2010): 2335-2339. Cited on 78.
- Seo, S., and H. Srinivasan. “On unimodality of Hilbert functions of Gorenstein Artin algebras of embedding dimension four.” Comm. Algebra 40 (2012): 2893-2905. Cited on 86.
- Stanley, R. “Weyl groups, the hard Lefschetz theorem, and the Sperner property.” SIAM J. Algebr. Discr. Meth. 1 (1980): 168-184. Cited on 89.
- Stanley, R. “Hilbert functions of graded algebras.” Adv. Math. 28 (1978): 57-83. Cited on 85, 86 and 93.
- Watanabe, J. “The Dilworth number of Artinian rings and finite posets with rank function.” In: Commutative Algebra and Combinatorics, Adv. Stud. Pure Math. 11. Amsterdam: North-Holland, 1987. Cited on 89.
- Watanabe, J. “A note on complete intersections of height three.” Proc. Amer. Math. Soc. 126 (1998): 3161-3168. Cited on 90.
- Zanello, F. “Stanley’s theorem on codimension 3 Gorenstein h-vectors.” Proc. Amer. Math. Soc. 134, no. 1 (2006): 5-8. Cited on 85 and 93.