Have a personal or library account? Click to login
Lefschetz Properties in Algebra, Geometry and Combinatorics: Notes for the preparatory school Cover

Lefschetz Properties in Algebra, Geometry and Combinatorics: Notes for the preparatory school

Open Access
|Jul 2025

References

  1. Abdallah, N., et al. “Lefschetz properties of some codimension three Artinian Gorenstein algebras.” J. Algebra 625 (2023): 28-45. Cited on 78.
  2. Altafi, N., and M. Boij. “The weak Lefschetz property of equigenerated monomial ideals.” J. Algebra 556 (2020): 136-168. Cited on 78.
  3. Altafi, N., and S. Lundqvist. “Monomial ideals and the failure of the strong Lefschetz property.” Collect. Math. 73, no. 3 (2022): 383-390. Cited on 78.
  4. Alzati, A., and R. Re. “Complete intersections of quadrics and the weak Lefschetz property.” Collect. Math. 70, no. 2 (2019): 283-294. Cited on 78 and 92.
  5. Atiyah, M., and I.G. MacDonald. Introduction to Commutative Algebra. Reading, MA: Addison-Wesley, 1969. Cited on 50, 53, 58 and 65.
  6. Bernstein, D., and A. Iarrobino. “A nonunimodal graded Gorenstein Artin algebra in codimension five.” Comm. Algebra 20 (1992): 2323-2336. Cited on 87.
  7. Bezerra, L., et al. “On minimal Gorenstein Hilbert functions.” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 118, no. 1 (2024): Article 29. Cited on 87.
  8. Bigatti, A., A.V. Geramita, and J. Migliore. “Geometric consequences of extremal behavior in a theorem of Macaulay.” Trans. Amer. Math. Soc. 346, no. 1 (1994): 203-235. Cited on 68.
  9. Boij, M. “Graded Gorenstein Artin algebras whose Hilbert functions have a large number of valleys.” Comm. Algebra 23 (1995): 97-103. Cited on 78 and 87.
  10. Boij, M., and S. Lundqvist. “A classification of the weak Lefschetz property for almost complete intersections generated by powers of general linear forms.” Algebra Number Theory 17, no. 1 (2023): 111-126. Cited on 78.
  11. Boij, M., et al. “The non-Lefschetz locus.” J. Algebra 505 (2018): 288-320. Cited on 78 and 81.
  12. Boij, M., et al. “On the weak Lefschetz property for height four equigenerated complete intersections.” Trans. Amer. Math. Soc. Ser. B 10 (2023): 1254-1286. Cited on 78 and 92.
  13. Boij, M., et al . “The shape of a pure O-sequence.” Mem. Amer. Math. Soc. 218 (2012). Cited on 78.
  14. Boij, M., et al. “On the weak Lefschetz property for Artinian Gorenstein algebras of codimension three.” J. Algebra 403 (2014): 48-68. Cited on 78, 89, 93 and 94.
  15. Brenner, H., and A. Kaid. “Syzygy bundles on ℙ2 and the weak Lefschetz property.” Illinois J. Math. 51, no. 4 (2007): 1299-1308. Cited on 80.
  16. Bruns, W., and J. Herzog. Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge: Cambridge Univ. Press, 1993. Cited on 60.
  17. Chiantini, L., et al. “Configurations of points in projective space and their projections.” Preprint 2022. arXiv:2209.04820. Cited on 78, 98, 100, 101 and 105.
  18. Chiantini, L., et al. “Geproci sets and the combinatorics of skew lines in ℙ3.” Preprint 2023. arXiv:2308.00761. Cited on 99.
  19. Cook, D. II, et al. “Lefschetz properties of balanced 3-polytopes.” Rocky Mountain J. Math. 48, no. 3 (2018): 769-790. Cited on 78.
  20. Cook, D., et al. “Line arrangements and configurations of points with an unexpected geometric property.” Compos. Math. 154, no. 10 (2018): 2150-2194. Cited on 97.
  21. Chiantini, L., and J. Migliore. “Almost maximal growth of the Hilbert function.” J. Algebra 431 (2015): 38-77. Cited on 68, 99 and 105.
  22. Chiantini, L., and J. Migliore. “Sets of points which project to complete intersections, and unexpected cones.” Trans. Amer. Math. Soc. 374, no. 4 (2021): 2581-2607. Cited on 98.
  23. Cook, D. II, and U. Nagel. “The weak Lefschetz property, monomial ideals, and lozenges.” Illinois J. Math. 55, no. 1 (2011): 377-395. Cited on 78.
  24. Cox, D., J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. 4th ed. New York: Springer, 2015. Cited on 50, 53, 55, 56, 58, 59, 107 and 108.
  25. Davis, E.D. “Complete intersections of codimension 2 in ℙr: The Bezout-Jacobi-Segre theorem revisited.” Rend. Sem. Mat. Univ. Politec. Torino 43, no. 4 (1985): 333-353. Cited on 68.
  26. Failla, G., Z. Flores, and C. Peterson. “On the weak Lefschetz property for vector bundles on ℙ2.” J. Algebra 568 (2021): 22-34. Cited on 78.
  27. Geramita, A.V., B. Harbourne, and J. Migliore. “Star configurations in ℙn.” J. Algebra 376 (2013): 279-299. Cited on 72.
  28. Gondim, R. “On higher Hessians and the Lefschetz properties.” J. Algebra 489 (2017): 241-263. Cited on 78.
  29. Gondim, R., and G. Zappalà. “Lefschetz properties for Artinian Gorenstein algebras presented by quadrics.” Proc. Amer. Math. Soc. 146, no. 3 (2018): 993-1003. Cited on 78.
  30. Gotzmann, G. “Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes.” Math. Z. 158 (1978): 61-70. Cited on 68.
  31. Harbourne, B., H. Schenck, and A. Seceleanu. “Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property.” J. Lond. Math. Soc. 84 (2011): 712-730. Cited on 78.
  32. Harbourne, B., J. Migliore, and U. Nagel. “Unexpected hypersurfaces and their consequences: A survey.” In: Lefschetz Properties: Current and New Directions, Springer INdAM Series, vol. 59 (2024): 29-58. Cited on 97.
  33. Harbourne, B., et al. “Unexpected hypersurfaces and where to find them.” Michigan Math. J. 70 (2021): 301-339. Cited on 78, 97 and 99.
  34. Harima, T. “Characterization of Hilbert functions of Gorenstein Artin algebras with the Weak Stanley Property.” Proc. Amer. Math. Soc. 123 (1995): 3631-3638. Cited on 83.
  35. Harima, T., et al. The Lefschetz Properties. Lecture Notes in Mathematics 2080. New York: Springer-Verlag, 2013. Cited on 50 and 78.
  36. Harima, T., et al. “The weak and strong Lefschetz property for Artinian K-algebras.” J. Algebra 262 (2003): 99-126. Cited on 50, 78, 79, 90 and 91.
  37. Hartshorne, R. Algebraic Geometry. Graduate Texts in Mathematics 52. New York: Springer-Verlag, 1977. Cited on 58, 62, 67 and 127.
  38. Ikeda, H. “Results on Dilworth and Rees numbers of Artinian local rings.” Jpn. J. Math. 22 (1996): 147-158. Cited on 78, 84, 85, 87 and 89.
  39. Ilardi, G. “Jacobian ideals, arrangements and the Lefschetz properties.” J. Algebra 508 (2018): 418-430. Cited on 78.
  40. Juhnke-Kubitzke, M., and R. Miró-Roig. “List of problems.” In: Lefschetz Properties: Current and New Directions, Springer INdAM Series, vol. 59 (2024): 211-225. Cited on 50.
  41. Macaulay, F.S. “Some properties of enumeration in the theory of modular systems.” Proc. Lond. Math. Soc. 26 (1927): 531-555. Cited on 68.
  42. Marangone, E. “The non-Lefschetz locus of vector bundles of rank 2 over ℙ2.” J. Algebra 630 (2023): 297-316. Cited on 78 and 81.
  43. Marangone, E. “Some notes and corrections of the paper ’The non-Lefschetz locus’.” J. Algebra 631 (2023): 106-119. Cited on 78 and 81.
  44. Marangone, E. “Jumping conics and Lefschetz property of vector bundles of rank 2 over ℙ2.” In preparation. Cited on 78, 81 and 91.
  45. Migliore, J. “Geometric invariants for liaison of space curves.” J. Algebra 99 (1986): 548-572. Cited on 78 and 81.
  46. Migliore, J. Introduction to Liaison Theory and Deficiency Modules. Progress in Mathematics 165. Basel: Birkhäuser, 1998. Cited on 73 and 82.
  47. Migliore, J., and R. Miró-Roig. “On the strong Lefschetz problem for uniform powers of general linear forms in k[x, y, z].” Proc. Amer. Math. Soc. 146, no. 2 (2018): 507-523. Cited on 78.
  48. Migliore, J., R. Miró-Roig, and U. Nagel. “Monomial ideals, almost complete intersections and the weak Lefschetz property.” Trans. Amer. Math. Soc. 363, no. 1 (2011): 229-257. Cited on 78, 79, 80 and 131.
  49. Migliore, J., R. Miró-Roig, and U. Nagel. “On the weak Lefschetz property for powers of linear forms.” Algebra Number Theory 6 (2012): 487-526. Cited on 78.
  50. Migliore, J., and U. Nagel. “A tour of the weak and strong Lefschetz properties.” J. Commut. Algebra 5 (2013): 329-358. Cited on 50 and 78.
  51. Migliore, J., and U. Nagel. “Gorenstein algebras presented by quadrics.” Collect. Math. 64, no. 2 (2013): 211-233. Cited on 78.
  52. Migliore, J., and U. Nagel. “The Lefschetz question for ideals generated by powers of linear forms in few variables.” J. Commut. Algebra 13, no. 3 (2021): 381-405. Cited on 78.
  53. Migliore, J., U. Nagel, and F. Zanello. “A characterization of Gorenstein Hilbert functions in codimension four with small initial degree.” Math. Res. Lett. 15 (2008): 331-349. Cited on 86.
  54. Migliore, J., U. Nagel, and F. Zanello. “On the degree two entry of a Gorenstein h-vector and a conjecture of Stanley.” Proc. Amer. Math. Soc. 136 (2008): 2755-2762. Cited on 87.
  55. Migliore, J., U. Nagel, and F. Zanello. “Bounds and asymptotic minimal growth for Gorenstein Hilbert functions.” J. Algebra 321 (2009): 1510-1521. Cited on 87.
  56. Migliore, J., and F. Zanello. “Stanley’s nonunimodal Gorenstein h-vector is optimal.” Proc. Amer. Math. Soc. 145 (2017): 1-9. Cited on 86.
  57. Migliore, J., and F. Zanello. “The Hilbert functions which force the weak Lefschetz property.” J. Pure Appl. Algebra 210 (2007): 465-471. Cited on 84.
  58. Migliore, J., and F. Zanello. “Unimodal Gorenstein h-vectors without the Stanley-Iarrobino property.” Comm. Algebra 46 (2018): 2054-2062. Cited on 84, 87 and 133.
  59. Miró-Roig, R., and Q.H. Tran. “On the weak Lefschetz property for almost complete intersections generated by uniform powers of general linear forms.” J. Algebra 551 (2020): 209-231. Cited on 78.
  60. Rao, A.P. “Liaison among curves in ℙ3.” Invent. Math. 50, no. 3 (1978/79): 205-217. Cited on 82.
  61. Reid, L., L. Roberts, and M. Roitman. “On complete intersections and their Hilbert functions.” Canad. Math. Bull. 34 (1991): 525-535. Cited on 89.
  62. Schenck, H. Computational Algebraic Geometry. London Mathematical Society Student Texts 58. Cambridge: Cambridge Univ. Press, 2003. Cited on 50.
  63. Schenck, H., and A. Seceleanu. “The weak Lefschetz property and powers of linear forms in K[x, y, z].” Proc. Amer. Math. Soc. 138 (2010): 2335-2339. Cited on 78.
  64. Seo, S., and H. Srinivasan. “On unimodality of Hilbert functions of Gorenstein Artin algebras of embedding dimension four.” Comm. Algebra 40 (2012): 2893-2905. Cited on 86.
  65. Stanley, R. “Weyl groups, the hard Lefschetz theorem, and the Sperner property.” SIAM J. Algebr. Discr. Meth. 1 (1980): 168-184. Cited on 89.
  66. Stanley, R. “Hilbert functions of graded algebras.” Adv. Math. 28 (1978): 57-83. Cited on 85, 86 and 93.
  67. Watanabe, J. “The Dilworth number of Artinian rings and finite posets with rank function.” In: Commutative Algebra and Combinatorics, Adv. Stud. Pure Math. 11. Amsterdam: North-Holland, 1987. Cited on 89.
  68. Watanabe, J. “A note on complete intersections of height three.” Proc. Amer. Math. Soc. 126 (1998): 3161-3168. Cited on 90.
  69. Zanello, F. “Stanley’s theorem on codimension 3 Gorenstein h-vectors.” Proc. Amer. Math. Soc. 134, no. 1 (2006): 5-8. Cited on 85 and 93.
DOI: https://doi.org/10.2478/aupcsm-2025-0002 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 49 - 141
Submitted on: Jan 25, 2025
Accepted on: Apr 5, 2025
Published on: Jul 11, 2025
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Juan C. Migliore, Giuseppe Favacchio, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.