Have a personal or library account? Click to login
Lefschetz properties through a topological lens Cover

References

  1. Abdallah, N., et al. “Hilbert functions and Jordan type of Perazzo Artinian algebras.” In: Lefschetz Properties, 59-80. Vol. 59 of Springer INdAM Ser.. Singapore: Springer, 2024. Cited on 37.
  2. Altafi, N., et al. “Artinian Gorenstein algebras having binomial Macaulay dual generator.” In preparation. Cited on 42.
  3. Billera, L. J., and C. W. Lee. “A proof of the Sufficiency of McMullen’s Conditions for f-Vectors of Simplicial Convex Polytopes.” J. Combin. Theory Ser. A 31 (1981): 237-255. Cited on 22.
  4. Chern, S.-S. “On a Generalization of Kähler Geometry.” In: R. H. Fox, et al. (eds.), Algebraic Geometry and Topology, 103-124. Princeton, NJ: Princeton Univ. Press, 1951. Cited on 11.
  5. Cook, D. II. “The Lefschetz properties of monomial complete intersections in positive characteristic.” J. Algebra 369 (2012): 42-58. Cited on 21.
  6. Deligne, P. “La conjecture de Weil. II.” Inst. Hautes Études Sci. Publ. Math. no. 52 (1980): 137-252. Cited on 11.
  7. DiPasquale, M., T. Nguy˜ên, and A. Seceleanu. “Duality for asymptotic invariants of graded families.” Adv. Math. 430 (2023): paper no. 109208. Cited on 28.
  8. Eisenbud, D. Commutative Algebra: With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Vol. 150. New York: Springer-Verlag, 1995. Cited on 28.
  9. Geramita, A. V. “Inverse systems of fat points: Waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals.” In: The Curves Seminar at Queen’s, 2-114. Vol. 102 of Queen’s Papers in Pure and Appl. Math. Kingston, ON: Queen’s Univ., 1996. Cited on 28 and 31.
  10. Gondim, R. “On higher Hessians and the Lefschetz properties.” J. Algebra 489 (2017): 241-263. Cited on 36.
  11. Gondim, R., and F. Russo. “Cubic hypersurfaces with vanishing Hessian.” J. Pure Appl. Algebra 219 (2015): 779-806. Cited on 44.
  12. Grayson, D., and M. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at: http://www2.macaulay2.com. Cited on 19.
  13. Harima, T., et al. The Lefschetz Properties. Vol. 2080 of Lecture Notes in Mathematics. Heidelberg: Springer, 2013. Cited on 7, 8 and 27.
  14. Harima, T., and J. Watanabe. “The strong Lefschetz property for Artinian algebras with non-standard grading.” J. Algebra 311 (2007): 511-537. Cited on 19.
  15. Herzog, J., and D. Popescu. “The strong Lefschetz property and simple extensions.” arXiv:math/05065537. Cited on 21.
  16. Hodge, W. V. D. The Theory and Applications of Harmonic Integrals. 2nd ed. London: Cambridge Univ. Press, 1952. Cited on 11.
  17. Iarrobino, A., P. Macias Marques, and C. McDaniel. “Artinian algebras and Jordan type.” J. Commut. Algebra 14, no. 3 (2022): 365-414. Cited on 26.
  18. Iarrobino, A., C. McDaniel, and A. Seceleanu. “Connected sums of graded Artinian Gorenstein algebras and Lefschetz properties.” J. Pure Appl. Algebra 226, no. 1 (2022): 106787. Cited on 37, 38 and 39.
  19. Iarrobino, A., P. Macias Marques, C. McDaniel, A. Seceleanu, and J. Watanabe. “Cohomological blow ups of graded Artinian Gorenstein algebras along surjective maps.” Int. Math. Res. Not. IMRN 2023, no. 7 (2023): 5816-5886. Cited on 8, 37, 43, 44 and 45.
  20. Ikeda, H. “Results on Dilworth and Rees numbers of Artinian local rings.” Jpn. J. Math. (N.S.) 22, no. 1 (1996): 147-158. Cited on 36.
  21. Lefschetz, S. L’Analysis Situs et la Géometrie Algébrique. Paris: Gauthier-Villars, 1924. Reprinted in: Selected Papers. New York: Chelsea, 1971. Cited on 11.
  22. Lefschetz, S. “Reminiscences of a mathematical immigrant in the United States.” Amer. Math. Monthly 77 (1970): 344-350. Cited on 11.
  23. Lindsey, M. “A class of Hilbert series and the strong Lefschetz property.” Proc. Amer. Math. Soc. 139 (2011): 79-92. Cited on 21.
  24. Macaulay, F. S. The Algebraic Theory of Modular Systems. Cambridge Mathematical Library. Cambridge: Cambridge Univ. Press, 1994. Cited on 29.
  25. Maeno, T., and J. Watanabe. “Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials.” Illinois J. Math. 53, no. 2 (2009): 591-603. Cited on 28 and 35.
  26. McMullen, P. “The numbers of faces of simplicial polytopes.” Israel J. Math. 9 (1971): 559-570. Cited on 21.
  27. Nicklasson, L. “The strong Lefschetz property of monomial complete intersections in two variables.” Collect. Math. 69, no. 3 (2018): 359-375. Cited on 21.
  28. Perazzo, U. “Sulle varietà cubiche la cui hessiana svanisce identicamente.” Giorn. Mat. Battaglini 38 (1900): 337-354. Cited on 44.
  29. Reid, L., L. Roberts, and M. Roitman. “On complete intersections and their Hilbert functions.” Canad. Math. Bull. 34 (1991): 525-535. Cited on 21.
  30. Robles, C. “Linear structures of Hodge theory.” Available at: https://sites.math.duke.edu/~robles/21.02-ICERM.pdf. Cited on 22.
  31. Stanley, R. “The number of faces of a simplicial convex polytope.” Adv. Math. 35 (1980): 236-238. Cited on 22.
  32. Stanley, R. “Combinatorial applications of the hard Lefschetz theorem.” In: Proc. Int. Congr. Math., Warsaw, Aug. 16-24, 1983, 447-453. Warsaw: PWN-Polish Scientific Publishers, 1984. Cited on 21.
  33. Watanabe, J. “The Dilworth number of Artinian rings and finite posets with rank function.” In: Commutative Algebra and Combinatorics, Vol. 11 of Adv. Stud. Pure Math. Amsterdam: North-Holland, 1987. Cited on 21.
DOI: https://doi.org/10.2478/aupcsm-2025-0001 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 7 - 47
Submitted on: Aug 24, 2024
Accepted on: Dec 12, 2024
Published on: Jun 28, 2025
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Alexandra Seceleanu, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.