Have a personal or library account? Click to login
Application of sine-Gordon model in description of Josephson junction – present state of affairs Cover

Application of sine-Gordon model in description of Josephson junction – present state of affairs

Open Access
|Mar 2025

References

  1. Ablowitz M.J., and H. Segur. Solitons and the Inverse Scattering Transform. Philadelphia: SIAM, 1981. Cited on 65.
  2. Anderson, P.W., and J.M. Rowell. “Probable Observation of the Josephson Tunnel Effect.” Phys. Rev. Lett. 10, no. 6 (1963): 230-232. Cited on 62.
  3. Bednorz, J.G., and K.A. Müller. “Possible high Tc superconductivity in the Ba-La-Cu-O system.” Z. Phys. B 64 (1986): 189-193. Cited on 61.
  4. Benabdallah, A., and J.G. Caputo, and A.C. Scott. “Exponentially tapered Josephson flux-flow oscillator.” Phys. Rev. B 54 (1996): id. 16139. Cited on 67.
  5. Boixo, S., et al. “Characterizing quantum supremacy in near-term devices.” Nat. Phys. 14 (2018): 595-600. Cited on 64.
  6. Bour, E. “Theorie de la deformation des surfaces.” Journal de l’École impériale polytechnique 22, (1862): 1-148. Cited on 65.
  7. Braginski, A.I. “Superconductor Electronics: Status and Outlook.” J. Super-cond. Nov. Magn. 32 (2019): 23-44. Cited on 62.
  8. Caputo, J.-G., and D. Dutykh. “Nonlinear waves in networks: Model reduction for the sine-Gordon equation.” Phys. Rev. E 90 (2014): id. 022912. Cited on 70.
  9. Chaloupka, H.J., and V.K. Kornev. “Antennae.” In Handbook of Superconducting Materials. CRC Press, 2019. Cited on 63.
  10. Cherednichenko, S.V., et al. “Hotelectron bolometer terahertz mixers for the Herschel space observatory.” Rev. Sci. Instrum. 79 (2008): id. 034501. Cited on 63.
  11. Dai, P., et al. “Synthesis and neutron powder diffraction study of the superconductor HgBa2Ca2Cu3O8+δ by Tl substitution.” Physica C 243, no. 3-4 (1995): 201-206. Cited on 62.
  12. Dobrowolski, T. “The kink motion in a curved Josephson junction.” Phys. Rev. E 79 (2009): id. 046601. Cited on 71 and 72.
  13. Dobrowolski, T. “The dynamics of the kink in curved large area Josephson junction.” Discrete Contin. Dyn. Syst. Ser. S 4 (2011): 1095-1105. Cited on 72.
  14. Dobrowolski, T. “Curved Josephson Junction.” Ann. Phys. (N.Y.) 327 (2012): 1336-1354. Cited on 71.
  15. Dobrowolski, T. “Possible curvature effects in Josephson Junction.” Eur. Phys. J. B 86 (2013): id. 346. Cited on 72.
  16. Dobrowolski T., and A. Jarmoliński. “Perturbation scheme for fluxon in curved Josephson junction.” Phys. Rev. E 96 (2017): id. 012214. Cited on 72.
  17. Dobrowolski T., and A. Jarmoliński. “Josephson junction with variable thickness of the dielectric layer.” Phys. Rev. E 101 (2020): id. 052215. Cited on 71.
  18. Drozdov A.P., et al. “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system.” Nature 525 (2015): 73-76. Cited on 61.
  19. Drozdov, A.P., et al. “Superconductivity at 250 K in Lanthanum Hydride under High Pressures.” Nature 569 (2019): 528-531. Cited on 62.
  20. Faddeev L.D., and L.A. Takhtajan. Hamiltonian Methods in the Theory of Soli-tons. Berlin; New York: Springer-Verlag, 1987. Cited on 65.
  21. Gallop, J., and L. Hao. “Applications: Other devices-metrology.” In: Handbook of Superconducting Materials. CRC Press, 2019. Cited on 64.
  22. Gatlik, J., and T. Dobrowolski. “The impact of thermal noise on kink propagation through a heterogeneous system.” Physica D 445 (2023): id. 133649. Cited on 73.
  23. Gingrich, E., et al. “Controllable 0-π Josephson junctions containing a ferromagnetic spin valve.” Nat. Phys. 12 (2016): 564-567. Cited on 64.
  24. Glick, J.A., et al. “Spin-triplet supercurrent in JJs containing a synthetic antiferromagnet with perpendicular magnetic anisotropy.” Phys. Rev. B 96 (2017): id. 224515. Cited on 64.
  25. Gol’tsman, G., et al. “Picosecond superconducting single photon optical detector.” Appl. Phys. Lett. 79 (2001): 705-707. Cited on 63.
  26. Granata, C., and A. Vettoliere. “Nano superconducting Interference device: a powerful tool for nanoscale investigations.” Phys. Rep. 614 (2016): 1-69. Cited on 64.
  27. Gulevich, D.R., and F.V. Kusmartsev. “Flux Cloning in Josephson Transmission Lines.” Phys. Rev. Lett. 97 (2006): id. 017004. Cited on 67.
  28. Gulevich, D.R., and F.V. Kusmartsev. “Switching phenomena in an annular Josephson junction.” Physica C 435 (2006): 87-91. Cited on 68.
  29. Gulevich, D.R., and F.V. Kusmartsev. “Fluxon Collider for Multiple Fluxon-Antifluxon Collisions.” New J. Phys. 9 (2007): id. 59. Cited on 68.
  30. Gulevich, D.R., et al. “Josephson fluxon pump: Theoretical aspects and experimental implementation of elementary flux quanta generator with BSCCO.” Physica C 468 (2008): 1903-1906. Cited on 69.
  31. Gulevich D.R., et al. “Shape waves in 2D Josephson junctions: Exact solutions and time dilation.” Phys. Rev. Lett. 101 (2008): id. 127002. Cited on 69.
  32. Hansen, R.C., and R.E. Collin. Small Antenna Handbook. Hoboken, New Jersey: John Wiley & Sons, Inc., 2011. Cited on 63.
  33. Häussler, C., and J. Oppenländer, and N. Schopol. “Nonperiodic flux to voltage conversion of series arrays of dc superconducting quantum interference devices.” J. Appl. Phys. 93 (2001): 1875-1879. Cited on 63.
  34. Il’in, K.S., et al. “Picosecond hotelectron energy relaxation in NbN superconducting photodetectors.” Appl. Phys. Lett. 76 (2000): 2752-2754. Cited on 63.
  35. Inaba, T., et al. “Routine clinical heart examinations using SQUID magnetocardiography at University of Tsukuba Hospital.” Supercond. Sci. Technol. 30 (2017): id. 114003. Cited on 64.
  36. Jarmoliński, A., and T. Dobrowolski. “The role of magnetic fields for curvature effects in Josephson junction.” Physica B 514 (2017): 24-29. Cited on 71.
  37. Josephson, B.D. “Possible new effects in superconductive tunnelling.” Phys. Lett. 1, no. 7 (1962): 251-253. Cited on 62.
  38. Josephson, B.D. “The discovery of tunnelling supercurrents.” Rev. Mod. Phys. 46, no. 2 (1974): 251-254. Cited on 62.
  39. Kivshar, Y.S., and B.A. Malomed. “Dynamics of solitons in nearly integrable systems.” Rev. Mod. Phys. 61 (1989): id. 763. Cited on 66.
  40. Kemp, A., and A. Wallraff, and A.V. Ustinov. “Josephson Vortex Qubit: Design, Preparation and Read-Out.” Phys. Stat. Sol. B 233 (2002): 472-481. Cited on 67.
  41. Kemp, A., and A. Wallraff, and A.V. Ustinov. “Testing a state preparation and read-out protocolfor the vortex qubit.” Physica C 368 (2002): 324-327. Cited on 67.
  42. Kohlmann, J. “Application to Josephson voltage standards.” In: Josephson Junctions. History, Devices, and Applications. 359-383. New York: Jenny Stanford Publishing, 2017. Cited on 64.
  43. Kornev, V.K., et al. “Design and experimental evaluation of SQUIF arrays with linear voltage response.” IEEE Trans. Apl. Supercond. 21 (2011): 394-398. Cited on 63.
  44. Korneev, A., et al. “Physics and operation of superconducting single-photon detectors.” In: Superconductors at the Nanoscale: from Basic Research to Applications, 279-308. Berlin: De Gruyter Press, 2017. Cited on 63.
  45. Krause H.J., and M. Mück, and S. Tanaka. “SQUIDs in non-destructive evaluation.” In: Applied Superconductivity: Handbook on Devices and Applications. Vol. 2. Wiley, 2015. Cited on 64.
  46. Lamb, G.L. Elements of Soliton Theory. Wiley, 1980. Cited on 65.
  47. Likharev, K.K., and O.A. Mukhanov, and V.K. Semenov. “Resistive singleflux quantum logic for the Josephson junction technology.” In: SQUID ’85: Superconducting Quantum Interference Devices and Their Applications. 1103-1108. Berlin; New York: Walter de Gruyter, 1985. Cited on 64.
  48. Ling, Liming, and Xuan Sun. “On the elliptic-localized solutions of the sine-Gordon equation.” Physica D: Nonlinear Phenomena 444 (2023): id. 133597. Cited on 66.
  49. Lutchyn, R.M., and J.D. Sau, and S. Das Sarma. “Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures.” Phys. Rev. Lett. 105 (2010): id. 077001. Cited on 65.
  50. Manheimer, M.A. “Cryogenic computing complexity program: phase 1: introduction.” IEEE Trans. Appl. Supercond. 25 (2015): id. 1301704. Cited on 64.
  51. Miki, S., and M. Fujiwara, and R.B. Jin. “Quantum information networks with superconducting nanowire single-photon detectors.” In: Superconducting Device in Quantum Optics. Cham; Heidelberg; New York; Dordrecht; London: Springer International Publishing Switzerland, 2016. Cited on 63.
  52. Monaco, R. “Engineering double-well potentials with variable-width annular Josephson tunnel junctions.” J. Phys. Condens. Matter 28 (2016): id. 445702. Cited on 70.
  53. Monaco R., and J. Mygind, and V.P. Koshelets. “Development of a Josephson vortex two-state system based on a confocal annular Josephson junction.” Super-cond. Sci. Technol. 31 (2018): id. 025003. Cited on 70.
  54. Nakajima, K., and Y. Onodera,and Y. Ogawa. “Logic design of Josephson network.” J. Appl. Phys. 47 (1976): 1620-1627. Cited on 66.
  55. Niedzielski, B., et al. “S/F/S Josephson junctions with single-domain ferromagnets for memory applications.” Supercond. Sci. Technol. 28 (2015): id. 085012. Cited on 64.
  56. Nowak, H. “SQUIDs in biomagnetism.” In: Applied Superconductivity: Handbook on Devices and Applications. Vol. 2. 992-1019. Wiley, 2015. Cited on 64.
  57. Oates, D.E. “Microwave resonators and filters.” In: Handbook of Superconducting Materials. CRC Press, 2019. Cited on 63.
  58. Olver, P.J. Applications of Lie Groups to Differential Equations. New York: Springer New York, 1986. Cited on 66.
  59. Oreg, Y., and G. Refael, and F. von Oppen. “Helical liquids and Majorana bound states in quantum wires.” Phys. Rev. Lett. 105 (2010): id. 177002. Cited on 65.
  60. Rogers, C., and W.K. Schief. University, Bäcklund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory. Cambridge: Cambridge University Press 2002. Cited on 66.
  61. Schilling, A., et al. “Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system.” Nature 363 (1993): 56-58. Cited on 62.
  62. Seidel, P. (ed.) Applied Superconductivity: Handbook on Devices and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. Cited on 62.
  63. Service R.F. “At last, room temperature superconductivity achieved.” Science 370, no. 6514 (2020): 273-274. Cited on 62.
  64. Snider, E., et al. “Room-temperature superconductivity in a carbonaceous sulfur hydride.” Nature 586 (2020): 373-377. Cited on 62.
  65. Sobolewski, R. “Optical sensors.” In: Handbook of Superconducting Materials. CRC Press, 2019. Cited on 63.
  66. Stolz, R. “Geophysical exploration.” In: Applied Superconductivity: Handbook on Devices and Applications. Vol. 2. 1020-1041. Wiley, 2015. Cited on 63.
  67. Ullom, J.N., and D.A. Bennett. “Review of superconducting transition-edge sensors for X-ray and gamma-ray spectroscopy.” Supercond. Sci. Technol. 28 (2015): id. 084003. Cited on 63.
  68. Van Duzer, T., et al. “64-kb hybrid Josephson-CMOS 4 Kelvin RAM with 400 ps access time and 12 mW read power.” IEEE Trans. Appl. Supercond. 23 (2013): id. 1700504. Cited on 64.
  69. Wiedenmann, J., et al. “4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions.” Nat. Comm. 7 (2016): id. 10303. Cited on 65.
  70. Yu, H.F., et al. “Quantum and classical resonant escapes of a strongly driven Josephson junction.” Phys. Rev. B 81 (2010): 144518. Cited on 64.
  71. Zhang, H., et al. “Quantized Majorana conductance.” Nature 556 (2018): 74-79. Cited on 65.
DOI: https://doi.org/10.2478/aupcsm-2024-0007 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 61 - 77
Submitted on: Oct 12, 2024
Accepted on: Jan 24, 2025
Published on: Mar 12, 2025
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Tomasz Dobrowolski, Leszek Głowacki, Kazimierz Rajchel, Mateusz Wachla, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.