References
- Ablowitz M.J., and H. Segur. Solitons and the Inverse Scattering Transform. Philadelphia: SIAM, 1981. Cited on 65.
- Anderson, P.W., and J.M. Rowell. “Probable Observation of the Josephson Tunnel Effect.” Phys. Rev. Lett. 10, no. 6 (1963): 230-232. Cited on 62.
- Bednorz, J.G., and K.A. Müller. “Possible high Tc superconductivity in the Ba-La-Cu-O system.” Z. Phys. B 64 (1986): 189-193. Cited on 61.
- Benabdallah, A., and J.G. Caputo, and A.C. Scott. “Exponentially tapered Josephson flux-flow oscillator.” Phys. Rev. B 54 (1996): id. 16139. Cited on 67.
- Boixo, S., et al. “Characterizing quantum supremacy in near-term devices.” Nat. Phys. 14 (2018): 595-600. Cited on 64.
- Bour, E. “Theorie de la deformation des surfaces.” Journal de l’École impériale polytechnique 22, (1862): 1-148. Cited on 65.
- Braginski, A.I. “Superconductor Electronics: Status and Outlook.” J. Super-cond. Nov. Magn. 32 (2019): 23-44. Cited on 62.
- Caputo, J.-G., and D. Dutykh. “Nonlinear waves in networks: Model reduction for the sine-Gordon equation.” Phys. Rev. E 90 (2014): id. 022912. Cited on 70.
- Chaloupka, H.J., and V.K. Kornev. “Antennae.” In Handbook of Superconducting Materials. CRC Press, 2019. Cited on 63.
- Cherednichenko, S.V., et al. “Hotelectron bolometer terahertz mixers for the Herschel space observatory.” Rev. Sci. Instrum. 79 (2008): id. 034501. Cited on 63.
- Dai, P., et al. “Synthesis and neutron powder diffraction study of the superconductor HgBa2Ca2Cu3O8+δ by Tl substitution.” Physica C 243, no. 3-4 (1995): 201-206. Cited on 62.
- Dobrowolski, T. “The kink motion in a curved Josephson junction.” Phys. Rev. E 79 (2009): id. 046601. Cited on 71 and 72.
- Dobrowolski, T. “The dynamics of the kink in curved large area Josephson junction.” Discrete Contin. Dyn. Syst. Ser. S 4 (2011): 1095-1105. Cited on 72.
- Dobrowolski, T. “Curved Josephson Junction.” Ann. Phys. (N.Y.) 327 (2012): 1336-1354. Cited on 71.
- Dobrowolski, T. “Possible curvature effects in Josephson Junction.” Eur. Phys. J. B 86 (2013): id. 346. Cited on 72.
- Dobrowolski T., and A. Jarmoliński. “Perturbation scheme for fluxon in curved Josephson junction.” Phys. Rev. E 96 (2017): id. 012214. Cited on 72.
- Dobrowolski T., and A. Jarmoliński. “Josephson junction with variable thickness of the dielectric layer.” Phys. Rev. E 101 (2020): id. 052215. Cited on 71.
- Drozdov A.P., et al. “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system.” Nature 525 (2015): 73-76. Cited on 61.
- Drozdov, A.P., et al. “Superconductivity at 250 K in Lanthanum Hydride under High Pressures.” Nature 569 (2019): 528-531. Cited on 62.
- Faddeev L.D., and L.A. Takhtajan. Hamiltonian Methods in the Theory of Soli-tons. Berlin; New York: Springer-Verlag, 1987. Cited on 65.
- Gallop, J., and L. Hao. “Applications: Other devices-metrology.” In: Handbook of Superconducting Materials. CRC Press, 2019. Cited on 64.
- Gatlik, J., and T. Dobrowolski. “The impact of thermal noise on kink propagation through a heterogeneous system.” Physica D 445 (2023): id. 133649. Cited on 73.
- Gingrich, E., et al. “Controllable 0-π Josephson junctions containing a ferromagnetic spin valve.” Nat. Phys. 12 (2016): 564-567. Cited on 64.
- Glick, J.A., et al. “Spin-triplet supercurrent in JJs containing a synthetic antiferromagnet with perpendicular magnetic anisotropy.” Phys. Rev. B 96 (2017): id. 224515. Cited on 64.
- Gol’tsman, G., et al. “Picosecond superconducting single photon optical detector.” Appl. Phys. Lett. 79 (2001): 705-707. Cited on 63.
- Granata, C., and A. Vettoliere. “Nano superconducting Interference device: a powerful tool for nanoscale investigations.” Phys. Rep. 614 (2016): 1-69. Cited on 64.
- Gulevich, D.R., and F.V. Kusmartsev. “Flux Cloning in Josephson Transmission Lines.” Phys. Rev. Lett. 97 (2006): id. 017004. Cited on 67.
- Gulevich, D.R., and F.V. Kusmartsev. “Switching phenomena in an annular Josephson junction.” Physica C 435 (2006): 87-91. Cited on 68.
- Gulevich, D.R., and F.V. Kusmartsev. “Fluxon Collider for Multiple Fluxon-Antifluxon Collisions.” New J. Phys. 9 (2007): id. 59. Cited on 68.
- Gulevich, D.R., et al. “Josephson fluxon pump: Theoretical aspects and experimental implementation of elementary flux quanta generator with BSCCO.” Physica C 468 (2008): 1903-1906. Cited on 69.
- Gulevich D.R., et al. “Shape waves in 2D Josephson junctions: Exact solutions and time dilation.” Phys. Rev. Lett. 101 (2008): id. 127002. Cited on 69.
- Hansen, R.C., and R.E. Collin. Small Antenna Handbook. Hoboken, New Jersey: John Wiley & Sons, Inc., 2011. Cited on 63.
- Häussler, C., and J. Oppenländer, and N. Schopol. “Nonperiodic flux to voltage conversion of series arrays of dc superconducting quantum interference devices.” J. Appl. Phys. 93 (2001): 1875-1879. Cited on 63.
- Il’in, K.S., et al. “Picosecond hotelectron energy relaxation in NbN superconducting photodetectors.” Appl. Phys. Lett. 76 (2000): 2752-2754. Cited on 63.
- Inaba, T., et al. “Routine clinical heart examinations using SQUID magnetocardiography at University of Tsukuba Hospital.” Supercond. Sci. Technol. 30 (2017): id. 114003. Cited on 64.
- Jarmoliński, A., and T. Dobrowolski. “The role of magnetic fields for curvature effects in Josephson junction.” Physica B 514 (2017): 24-29. Cited on 71.
- Josephson, B.D. “Possible new effects in superconductive tunnelling.” Phys. Lett. 1, no. 7 (1962): 251-253. Cited on 62.
- Josephson, B.D. “The discovery of tunnelling supercurrents.” Rev. Mod. Phys. 46, no. 2 (1974): 251-254. Cited on 62.
- Kivshar, Y.S., and B.A. Malomed. “Dynamics of solitons in nearly integrable systems.” Rev. Mod. Phys. 61 (1989): id. 763. Cited on 66.
- Kemp, A., and A. Wallraff, and A.V. Ustinov. “Josephson Vortex Qubit: Design, Preparation and Read-Out.” Phys. Stat. Sol. B 233 (2002): 472-481. Cited on 67.
- Kemp, A., and A. Wallraff, and A.V. Ustinov. “Testing a state preparation and read-out protocolfor the vortex qubit.” Physica C 368 (2002): 324-327. Cited on 67.
- Kohlmann, J. “Application to Josephson voltage standards.” In: Josephson Junctions. History, Devices, and Applications. 359-383. New York: Jenny Stanford Publishing, 2017. Cited on 64.
- Kornev, V.K., et al. “Design and experimental evaluation of SQUIF arrays with linear voltage response.” IEEE Trans. Apl. Supercond. 21 (2011): 394-398. Cited on 63.
- Korneev, A., et al. “Physics and operation of superconducting single-photon detectors.” In: Superconductors at the Nanoscale: from Basic Research to Applications, 279-308. Berlin: De Gruyter Press, 2017. Cited on 63.
- Krause H.J., and M. Mück, and S. Tanaka. “SQUIDs in non-destructive evaluation.” In: Applied Superconductivity: Handbook on Devices and Applications. Vol. 2. Wiley, 2015. Cited on 64.
- Lamb, G.L. Elements of Soliton Theory. Wiley, 1980. Cited on 65.
- Likharev, K.K., and O.A. Mukhanov, and V.K. Semenov. “Resistive singleflux quantum logic for the Josephson junction technology.” In: SQUID ’85: Superconducting Quantum Interference Devices and Their Applications. 1103-1108. Berlin; New York: Walter de Gruyter, 1985. Cited on 64.
- Ling, Liming, and Xuan Sun. “On the elliptic-localized solutions of the sine-Gordon equation.” Physica D: Nonlinear Phenomena 444 (2023): id. 133597. Cited on 66.
- Lutchyn, R.M., and J.D. Sau, and S. Das Sarma. “Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures.” Phys. Rev. Lett. 105 (2010): id. 077001. Cited on 65.
- Manheimer, M.A. “Cryogenic computing complexity program: phase 1: introduction.” IEEE Trans. Appl. Supercond. 25 (2015): id. 1301704. Cited on 64.
- Miki, S., and M. Fujiwara, and R.B. Jin. “Quantum information networks with superconducting nanowire single-photon detectors.” In: Superconducting Device in Quantum Optics. Cham; Heidelberg; New York; Dordrecht; London: Springer International Publishing Switzerland, 2016. Cited on 63.
- Monaco, R. “Engineering double-well potentials with variable-width annular Josephson tunnel junctions.” J. Phys. Condens. Matter 28 (2016): id. 445702. Cited on 70.
- Monaco R., and J. Mygind, and V.P. Koshelets. “Development of a Josephson vortex two-state system based on a confocal annular Josephson junction.” Super-cond. Sci. Technol. 31 (2018): id. 025003. Cited on 70.
- Nakajima, K., and Y. Onodera,and Y. Ogawa. “Logic design of Josephson network.” J. Appl. Phys. 47 (1976): 1620-1627. Cited on 66.
- Niedzielski, B., et al. “S/F/S Josephson junctions with single-domain ferromagnets for memory applications.” Supercond. Sci. Technol. 28 (2015): id. 085012. Cited on 64.
- Nowak, H. “SQUIDs in biomagnetism.” In: Applied Superconductivity: Handbook on Devices and Applications. Vol. 2. 992-1019. Wiley, 2015. Cited on 64.
- Oates, D.E. “Microwave resonators and filters.” In: Handbook of Superconducting Materials. CRC Press, 2019. Cited on 63.
- Olver, P.J. Applications of Lie Groups to Differential Equations. New York: Springer New York, 1986. Cited on 66.
- Oreg, Y., and G. Refael, and F. von Oppen. “Helical liquids and Majorana bound states in quantum wires.” Phys. Rev. Lett. 105 (2010): id. 177002. Cited on 65.
- Rogers, C., and W.K. Schief. University, Bäcklund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory. Cambridge: Cambridge University Press 2002. Cited on 66.
- Schilling, A., et al. “Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system.” Nature 363 (1993): 56-58. Cited on 62.
- Seidel, P. (ed.) Applied Superconductivity: Handbook on Devices and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. Cited on 62.
- Service R.F. “At last, room temperature superconductivity achieved.” Science 370, no. 6514 (2020): 273-274. Cited on 62.
- Snider, E., et al. “Room-temperature superconductivity in a carbonaceous sulfur hydride.” Nature 586 (2020): 373-377. Cited on 62.
- Sobolewski, R. “Optical sensors.” In: Handbook of Superconducting Materials. CRC Press, 2019. Cited on 63.
- Stolz, R. “Geophysical exploration.” In: Applied Superconductivity: Handbook on Devices and Applications. Vol. 2. 1020-1041. Wiley, 2015. Cited on 63.
- Ullom, J.N., and D.A. Bennett. “Review of superconducting transition-edge sensors for X-ray and gamma-ray spectroscopy.” Supercond. Sci. Technol. 28 (2015): id. 084003. Cited on 63.
- Van Duzer, T., et al. “64-kb hybrid Josephson-CMOS 4 Kelvin RAM with 400 ps access time and 12 mW read power.” IEEE Trans. Appl. Supercond. 23 (2013): id. 1700504. Cited on 64.
- Wiedenmann, J., et al. “4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions.” Nat. Comm. 7 (2016): id. 10303. Cited on 65.
- Yu, H.F., et al. “Quantum and classical resonant escapes of a strongly driven Josephson junction.” Phys. Rev. B 81 (2010): 144518. Cited on 64.
- Zhang, H., et al. “Quantized Majorana conductance.” Nature 556 (2018): 74-79. Cited on 65.