Have a personal or library account? Click to login
λ-statistical convergence of double sequences of functions via difference operators Cover

λ-statistical convergence of double sequences of functions via difference operators

Open Access
|Dec 2024

References

  1. Aizpuru, Aizpuru Tomás, María del Carmen Listán-García, and Fernando Rambla-Barreno. “Double density by moduli and statistical convergence.” Bull. Belg. Math. Soc. Simon Stevin 19, no. 4 (2012): 663-673. Cited on 49.
  2. Basarir, Metin. “On the &inline;− Statistical Convergence of the Functions Defined on the Time Scale.” Proc. Int. Math. Sci. 1, no. 1 (2019): 1-10. Cited on 47.
  3. Buck, Robert Creighton. “Generalized asymptotic density.” Amer. J. Math. 75 (1953): 335-346. Cited on 47.
  4. Çakallı, Hüseyin. “On G-continuity.” Comput. Math. Appl. 61, no. 2 (2011): 313-318. Cited on 47.
  5. Çakallı, Hüseyin. “A new approach to statistically quasi Cauchy sequences.” Maltepe J. Math. 1, no. 1 (2019): 1-8. Cited on 47.
  6. Çakallı, Hüseyin, and Mohammad Kazim Khan. “Summability in topological spaces.” Appl. Math. Lett. 24, no. 3 (2011): 348-352. Cited on 47.
  7. Caserta, Agata, Giuseppe Di Maio, and Ljubiša Dragi Rosanda Kočinac. “Statistical convergence in function spaces.” Abstr. Appl. Anal. (2011): Art. ID 420419. Cited on 47.
  8. Çınar, Muhammed, and Mikail Et. “∆m-statistical convergence of order α̃ for double sequences of functions.” Facta Univ. Ser. Math. Inform. 35, no. 2 (2020): 393-404. Cited on 48, 50 and 51.
  9. Çolak, R., and Ç.A. Bektaş. “λ-Statistical convergence of order α.Acta Math. Sci. 31 (2011): 953-959. Cited on 48.
  10. Çolak, R., Y. Altin, and Reviewed by. “Statistical convergence of double sequences of order α̃.” J. Funct. Spaces Appl. 2013: Art. ID 682823. Cited on 48 and 49.
  11. Di Maio, Giuseppe, and Ljubiša Dragi Rosanda Kočinac. “Statistical convergence in topology.” Topology Appl. 156, no. 1 (2008): 28-45. Cited on 47.
  12. Duman, Oktay, and Cihan Orhan. “µ-statistically convergent function sequences.” Czechoslovak Math. J. 54(129), no. 2 (129): 413-422. Cited on 50.
  13. Et, Mikail. “Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences.” Appl. Math. Comput. 219, no. 17 (2013): 9372-9376. Cited on 50.
  14. Et, Mikail, and R. Çolak, “On generalized difference sequences spaces”. Soochow J. Math. 21 (2004): 167-173. Cited on 50.
  15. Fast, Henry. “Sur la convergence statistique.” Colloq. Math. 2 (1951): 241-244. Cited on 47.
  16. Fridy, John Albert. “On statistical convergence.” Analysis 5, no. 4 (1985): 301-313. Cited on 47.
  17. Gadjiev, Akif Djafar, and Cihan Orhan. “Some approximation theorems via statistical convergence.” Rocky Mountain J. Math. 32, no. 1 (2002): 129-138. Cited on 48.
  18. Gökhan, Ayşegül, and Mehmet Güngör. “On pointwise statistical convergence.” Indian J. Pure Appl. Math. 33, no. 9 (2002): 1379-1384. Cited on 48 and 50.
  19. Gökhan, Ayşegül, Mehmet Güngör, and Mikâil Et. “Statistical convergence of double sequences of real-valued functions.” Int. Math. Forum 2, no. 5-8 (2007): 365-374. Cited on 48 and 50.
  20. Güngör, Mehmet, and Ayşegül Gökhan. “On uniform statistical convergence.” Int. J. Pure Appl. Math. 19, no. 1 (2005): 17-24. Cited on 50.
  21. Işik, Mahmut, and Yavuz Altin. “f(λ,µ)statistical convergence of order ˜ α for double sequences.” J. Inequal. Appl. 2017: Paper No. 246. Cited on 48 and 50.
  22. Kandemir, Hacer şengül. “On I- Deferred Statistical Convergence in Topological Groups.” Maltepe J. Math. 1, no. 2 (2019): 48-55. Cited on 47.
  23. Kızmaz, Hüsnü. “On certain sequences spaces.” Canad. Math. Bull. 24, no. 2 (1981): 169-176. Cited on 50.
  24. Maddox, Ivor John. “Sequence spaces defined by a modulus.” Math. Proc. Cambridge Philos. Soc. 100, no. 1 (1986): 161-166. Cited on 49.
  25. Maddox, Ivor John. “Inclusions between F K spaces and Kuttner’s theorem.” Math. Proc. Cambridge Philos. Soc. 101, no. 3 (1987): 523-527. Cited on 55.
  26. Móricz, Ferenc. “Statistical convergence of multiple sequences.” Arch. Math. (Basel) 81, no. 1 (2003): 82-89. Cited on 47.
  27. Móricz, Ferenc. “Statistical limits of measurable functions.” Analysis (Munich) 24, no. 1 (2004): 1-18. Cited on 48.
  28. Móricz, Ferenc. “Statistical limit of Lebesgue measurable functions at ∞ with applications in Fourier Analysis and Summability.” Anal. Math. 40, no. 2 (2014): 147-159. Cited on 48.
  29. Mursaleen, Mohammad, Celal Çakan, Syed Abdul Mohiuddine, and Ekrem Savaş. “Generalized statistical convergence and statistical core of double sequences.” Acta Math. Sin. (Engl. Ser.) 26, no. 11 (2010): 2131-2144. Cited on 49.
  30. Mursaleen, Mohammad, Osama H.H. Edely. “Statistical convergence of double sequences.” J. Math. Anal. Appl. 288, no. 1 (2003): 223-231. Cited on 47 and 48.
  31. Mursaleen, Mohammad, Sabiha Tabassum, and Ruqaiyya Fatma. “On q-statistical summability method and its properties.” Iran. J. Sci. Technol. Trans. A Sci. 46, no. 2 (2022): 455-460. Cited on 48.
  32. Mursaleen, Mohammad, Sabiha Tabassum, and Ruqaiyya Fatma. “On the q-statistical convergence of double sequences.” Period. Math. Hungar. 88, no. 2 (2024): 324-334. Cited on 48.
  33. Nakano, Hidegoro. “Concave modulars.” J. Math. Soc. Japan 5 (1953): 29-49. Cited on 49.
  34. Patterson, Richard F., and Huseyin Cakalli. “Quasi Cauchy double sequences.” Tbilisi Math. J. 8, no. 2 (2015): 211-219. Cited on 47.
  35. Raj, Kuldip, and Seema Jamwal. “Some new difference sequence spaces defined by a sequence of modulus functions.” Int. J. Algebra Stat. 2 (2013): 29-36. Cited on 50.
  36. Raj, Kuldip, and Seema Jamwal. “Applications of statistical convergence to nnormed spaces.” Adv. Pure Appl. Math. 7, no. 3 (2016): 197-204. Cited on 48.
  37. Raj, Kuldip, Seema Jamwal, and Sunil Kumar Sharma. “Multiplier generalized double sequence spaces of fuzzy numbers defined by a sequence of Orlicz function.” Int. J. Pure Appl. Math. 78 (2012): 509-522. Cited on 48.
  38. Ruckle, William Henry. “F K spaces in which the sequence of coordinate vectors is bounded.” Canadian J. Math. 25 (1973): 973-978. Cited on 49.
  39. Šalát, Tibor. “On statistically convergent sequences of real numbers.” Math. Slovaca 30, no. 2 (1980): 139-150. Cited on 47.
  40. Schoenberg, Isaac Jacob. “The integrability of certain functions and related summability methods.” Amer. Math. Monthly 66 (1959): 361-375. Cited on 47.
  41. Taylan, İffet. “Abel statistical delta quasi Cauchy sequences of real numbers.” Maltepe Journal of Mathematics 1, no. 1 (2019): 18-23. Cited on 47.
  42. Torgut, Birgúl, and Yavuz Altin. “f-Statistical Convergence of Double Sequences of Order α̃Proc. Nat. Acad. Sci. India Sect. A 90, no. 5 (2020): 803-808. Cited on 49.
  43. Tripathy, Binod Chandra. “Statistically convergent double sequences.” Tamkang J. Math. 34, no. 3 (2003): 231-237. Cited on 48.
  44. Tripathy, Binod Chandra, and Bipul Sarma. “Statistically convergent difference double sequence spaces.” Acta Math. Sin. (Engl. Ser.) 24, no. 5 (2008): 737-742. Cited on 48.
  45. Zygmund, Antoni. Trigonometric series. Vol 1 Cambridge Library Collection. Cambridge: Cambridge University Press, 2002. Cited on 47.
DOI: https://doi.org/10.2478/aupcsm-2024-0006 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 47 - 60
Submitted on: Mar 18, 2024
Accepted on: Nov 29, 2024
Published on: Dec 23, 2024
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Kuldip Raj, Devia Narrania, Mohammad Mursaleen, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.