Have a personal or library account? Click to login
Centering toric arrangements of maximal rank Cover

References

  1. Brändén, Petter, and Luca Moci. “The multivariate arithmetic Tutte polynomial.” Trans. Amer. Math. Soc. 366, no. 10 (2014): 5523-5540. Cited on 39.
  2. Callegaro, Filippo, and Emanuele Delucchi. “The integer cohomology algebra of toric arrangements.” Adv. Math. 313 (2017): 746-802. Cited on 40 and 42.
  3. D’Adderio, Michele, and Luca Moci. “Arithmetic matroids, the Tutte polynomial and toric arrangements.” Adv. Math. 232 (2013): 335-367. Cited on 39.
  4. d’Antonio, Giacomo, and Emanuele Delucchi. “A Salvetti complex for toric arrangements and its fundamental group.” Int. Math. Res. Not. IMRN, no. 15 (2012): 3535-3566. Cited on 40.
  5. d’Antonio, Giacomo, and Emanuele Delucchi. “Minimality of toric arrangements.” J. Eur. Math. Soc. (JEMS) 17, no. 3 (2015): 483-521. Cited on 40, 41 and 42.
  6. De Concini, Corrado, and Giovanni Gaiffi. “A differential algebra and the homo-topy type of the complement of a toric arrangement.” Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 32, no. 1 (2021): 1-21. Cited on 40.
  7. De Concini, Corrado, and Claudio Procesi. “On the geometry of toric arrangements.” Transform. Groups 10, no. 3-4 (2005): 387-422. Cited on 39 and 40.
  8. De Concini, Corrado, and Claudio Procesi. Topics in hyperplane arrangements, polytopes and box-splines. Springer: New York, 2010. Cited on 40 and 41.
  9. Deligne, Pierre. “Théorie de Hodge. II.” Sci. Publ. Math, no. 40 (1971): 5-57. Cited on 39.
  10. Dimca, Alexandru, and Stefan Papadima. “Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments.” Ann. of Math. (2) 158, no. 2: 473-507. Cited on 40.
  11. Lefschetz, Solomon. L’analysis situs et la géométrie algébrique. Gauthier-Villars: Paris, 1924. Cited on 39.
  12. Lenz, Matthias. “Representations of weakly multiplicative arithmetic matroids are unique.” Ann. Comb. 23, no. 2 (2019): 335-346. Cited on 39 and 45.
  13. Looijenga, Eduard. “Cohomology of 3 and 13”. In: Mapping class groups and moduli spaces of Riemann surfaces, 205-228. Vol. 150 of Contemporary Mathematics. Göttingen/Seattle/Providence RI: American Mathematical Society, 1993. Cited on 39.
  14. Moci, Luca. “A Tutte polynomial for toric arrangements.” Trans. Amer. Math. Soc. 364, no. 2 (2012): 1067-1088. Cited on 39.
  15. Moci, Luca, and Simona Settepanella. “The homotopy type of toric arrangements.” J. Pure Appl. Algebra 215, no. 8 (2011): 1980-1989. Cited on 40.
  16. Newman, Morris. Integral Matrices. Vol. 45 of Monographs and Textbooks in Pure and Applied Mathematics. Washington, D.C.: Academic Press, 1972. Cited on 42 and 45.
  17. Pagaria, Roberto. “Two examples of toric arrangements.” J. Combin. Theory Ser. A 167 (2019): 389-402. Cited on 40.
  18. Randell, Richard. “Morse theory, Milnor fibers and minimality of hyperplane arrangements.” Proc. Amer. Math. Soc. 130, no. 9 (2002): 2737-2743. Cited on 40.
DOI: https://doi.org/10.2478/aupcsm-2024-0005 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 39 - 46
Submitted on: Nov 13, 2023
Accepted on: Oct 25, 2024
Published on: Nov 23, 2024
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Elia Saini, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.