References
- Adams C. Raymond. “On non-factorable transformations of double sequences.” Proc. Natl. Acad. Sci. USA 19, no. 5 (1933): 564-567. Cited on 113.
- Aktuğlu, Hüseyin, and Bekar Şerife. “q-Cesáro matrix and q-statistical convergence.” J. Comput. Appl. Math. 235, no. 16 (2011): 4717-4723. Cited on 113.
- Altay, Bilâl, and Başar Feyzi. “Some new spaces of double sequences.” J. Math. Anal. Appl. 309, no. 1 (2005): 70-90. Cited on 112.
- Başar, Feyzi. “The space 𝓛q of double sequences.” Math. J. Okayama Univ. 51 (2009): 149-157. Cited on 112 and 117.
- Başarir, Metin. “On the strong almost convergence of double sequences.” Period. Math. Hungar. 30, no. 3 (1995): 177-181. Cited on 113.
- Bekar, Şerife. q-matrix summability methods. Ph.D. Dissertation. Eastern Mediterranean University, 2010. Cited on 113.
- Boos, Johann. Classical and Modern Methods in Summability. Oxford Mathematical Monographs. New York: Oxford University Press Inc., 2000. Cited on 117.
- Candan, Murat. “Domain of the double sequential band matrix in the spaces of convergent and null sequences.” Adv. Difference Equ. (2014): Art. no. 163. Cited on 113.
- Candan, Murat. “A new sequence space isomorphic to the ℓ(p) and compact operators.” J. Math. Comput. Sci. 4, no. 2 (2014): 306-334. Cited on 113.
- Candan, Murat. “Some Characteristics of Matrix Operators on Generalized Fibonacci Weighted Difference Sequence Space.” Symmetry 14, no. 7 (2022): Art. no. 1283. Cited on 113.
- Cooke, Richard George. Infinite Matrices and Sequence Spaces. London: Macmillan & Co. Limited, 1950. Cited on 113.
- Çapan, Hüsamettin, and Başar Feyzi. “On the paranormed space L(t) of double sequences.” Filomat 32, no. 3 (2018): 1043-1053. Cited on 113 and 118.
- Çapan, Hüsamettin, and Başar Feyzi. “On some spaces isomorphic to the space of absolutely q-summable double sequences.” Kyungpook Math. J. 58, no. 2 (2018): 271-289. Cited on 113 and 118.
- Çinar, Muhammed, and Et Mikail. “q-double Cesaro matrices and q-statistical convergence of double sequences.” Nat. Acad. Sci. Lett. 43, no. 1 (2020): 73-76. Cited on 113.
- Demiriz, Serkan, and Duyar Osman. “Domain of difference matrix of order one in some spaces of double sequences.” Gulf J. Math. 3, no. 3 (2015): 85-100. Cited on 113.
- Demiriz, Serkan, and Duyar Osman. “Domain of the generalized double Cesàro matrix in some paranormed spaces of double sequences.” Tbilisi Math. J. 10, no. 2 (2017): 43-56. Cited on 113.
- Demiriz, Serkan, and Adem Şahin. “q-Cesàro Sequence Spaces Derived by q- analogue.” Adv. Math. Sci. J. 5, no. 2 (2016): 97-110. Cited on 113.
- Demiriz, Serkan, and Sezer Erdem. “On the New Double Binomial Sequence Space” Turk. J. Math. Comput. Sci. 12, no. 2 (2020): 101-111. Cited on 113.
- Demiriz, Serkan, and Erdem Sezer. “Domain of binomial matrix in some spaces of double sequences.” Punjab Univ. J. Math. (Lahore) 52, no. 11 (Lahore): 65-79. Cited on 113.
- Erdem, Sezer, and Demiriz Serkan. “Almost convergence and 4-dimensional binomial matrix.” Konuralp J. Math. 8, no. 2 (2020): 329-336. Cited on 113.
- Erdem, Sezer, and Demiriz Serkan. “A new RH-regular matrix derived by Jordan’s function and its domains on some double sequence spaces.” J. Funct. Spaces, to appear. Cited on 113.
- Hamilton, Hugh J. “Transformations of multiple sequences.” Duke Math. J. 2, no. 1 (1936): 29-60. Cited on 112.
- Hardy, Godfrey Harold. “On the Convergence of Certain Multiple Series.” Proc. London Math. Soc. (2) 1 (1904): 124-128. Cited on 112.
- Ilkhan, Merve, Alp Pinar Zengin, and Kara Emrah Evren. “On the spaces of linear operators acting between asymmetric cone normed spaces.” Mediterr. J. Math. 15, no. 3 (2018): Paper No. 136. Cited on 113.
- Ilkhan, Merve, and Kara Emrah Evren. “A new Banach space defined by Euler totient matrix operator.” Oper. Matrices 13, no. 2 (2019): 527-544. Cited on 113.
- Kac, Victor, and Pokman Cheung. Quantum Calculus. Springer: New York, 2002. Cited on 113.
- Móricz, Ferenc, and Rhoades Billy E. “Almost convergence of double sequences and strong regularity of summability matrices.” Math. Proc. Cambridge Philos. Soc. 104, no. 2 (1988): 283-294. Cited on 113.
- Mursaleen, Mohammad. “Almost strongly regular matrices and a core theorem for double sequences.” J. Math. Anal. Appl. 293, no. 2 (2004): 523-531. Cited on 113.
- Mursaleen, Mohammad, and Başar Feyzi. “Domain of Cesàro mean of order one in some spaces of double sequences.” Studia Sci. Math. Hungar. 51, no. 3 (2014): 335-356. Cited on 113 and 114.
- Ng, Peng Nung. “Cesàro sequence spaces of non-absolute type.” Comment. Math. Prace Mat. 20, no. 2 (1977/78): 429-433. Cited on 113.
- Pringsheim, Alfred. “Zur Theorie der zweifach unendlichen Zahlenfolgen.” Math. Ann. 53, no. 3 (1900): 289-321. Cited on 112.
- Robison, George Merritt. “Divergent double sequences and series.” Trans. Amer. Math. Soc. 28, no. 1 (1926): 50-73. Cited on 112.
- Tuğ, Orhan. “Four-dimensional generalized difference matrix and some double sequence spaces.” J. Inequal. Appl. (2017): Paper No. 149. Cited on 113.
- Tuğ, Orhan. “On almost B-summable double sequence spaces.” J. Inequal. Appl. (2018): Paper No. 9. Cited on 113.
- Tuğ, Orhan. “The spaces of B(r,s,t,u) strongly almost convergent double sequences and matrix transformations.” Bull. Sci. Math. 169 (2021): Paper No. 102989. Cited on 113.
- Yaying, Taja, Hazarika Bipan, and Mursaleen Mohammad. “On sequence space derived by the domain of q-Cesàro matrix in ellp space and the associated operator ideal.” J. Math. Anal. Appl. 493, no. 1 (2021): Paper No. 124453. Cited on 113.
- Yaying, Taja, Hazarika Bipan, and Mursaleen Mohammad. “On generalized (p, q)- Euler matrix and associated sequence spaces.” J. Funct. Spaces (2021): Art. ID 8899960. Cited on 113.
- Yeşilkayagil, Medine, and Başar Feyzi. “On the domain of Riesz mean in the space ℒs*$${\cal L}_s^*$$.” Filomat 31, no. 4 (2017): 925-940. Cited on 113, 117, 118 and 123.
- Yeşilkayagil, Medine, and Başar Feyzi. “Domain of Euler mean in the space of absolutely p-summable double sequences with 0 < p < 1.” Anal. Theory Appl. 34, no. 3 (2018): 241-252. Cited on 113.
- Zeltser, Maria. Investigation of double sequence spaces by soft and hard analitic methods. Vol. 25 of Dissertationes Mathematicae Universtaties Tartuensis. Tatru: Tartu University Press, 2001. Cited on 112.
- Zeltser, Maria. “On conservative matrix methods for double sequence spaces.” Acta Math. Hungar. 95, no. 3 (2002): 225-242. Cited on 112.
- Zeltser, Maria, Mursaleen Mohammad, and Mohiuddine Syed Abdul. “On almost conservative matrix methods for double sequence spaces.” Publ. Math. Debrecen 75, no. 3-4 (2009): 387-399. Cited on 113.