References
- Carmen Anthony Bruni. Twisted Extensions of Fermat’s Last Theorem. PhD diss. The University of British Columbia (Canada), 2015. Cited on 22 and 24.
- Faltings, Gerd. “Endlichkeitsätze für abelsch Varietäten über Zahlkörpen.” Invent. Math., 73 no. 3 (1983): 349-366. Cited on 22.
- Moussa, Fall. “Parametrization of Algebraic Points of Low Degrees on the Schaeffer Curve.” J. Math. Sci. Model., 4 no. 2 (2021): 51-55. Cited on 21.
- Griffiths, Phillip Augustus. Introduction to algebraic curves. Vol. 76 of Translations of mathematical monographs. Providence, RI: American Mathematical Society, 1989. Cited on 22.
- Mulholland, J. T. Elliptic curves with rational 2-torsion and related ternary Diophantine equations. PhD diss. The University of British Columbia (Canada), 2006. Cited on 22 and 24.
- Hindry, Marc, and Joseph Hillel Silverman. Diophantine geometry, an introduction. Vol. 201 of Graduade Texts in Mathematics. New York: Springer-Verlag, 2000. Cited on 24.
- Sall, Oumar, and Moussa Fall, and Chérif Mamina Coly. “Points algbriques de degré donné sur la courbe d’équation affine y2 = x5 + 1.” International Journal of Development Research 6 no. 11 (2016): 10295-10300. Cited on 21.
- Schaefer, Edward Frank. “Computing a Selmer group of a Jacobian using functions on the curve.” Math. Ann. 310, no. 3 (1998): 447-471. Cited on 21.
- Stoll, Michael. “On the arithmetic of the curves y2 = xl + A; and their Jacobians.” J. Reine Angew. Math. 501 (1998): 171-189. Cited on 21.
- Stoll, Michael. “On the arithmetic of the curves y2 = xl + A. II.” J. Number Theory 93, no. 2 (2002): 183-206. Cited on 21.
- Stoll, Michael, and Tonghai Yang. “On the L-function of the curves y2 = x5 + A.” J. London Math. Soc. (2) 68, no. 2 (2003): 273-287. Cited on 21.
- Stoll, Michael. “Implementing 2-descent for Jacobians of hyperelliptic curves.” Acta Arith. 98, no. 3 (2001): 245-277. Cited on 24.