Have a personal or library account? Click to login

References

  1. [1] Borumand Saeid, Arsham, and Akbar Rezaei. “Quotient CI-algebras.” Bull. Transilv. Univ. Bra³ov Ser. III 5(54), no. 2 (2012): 15-22. Cited on 94.
  2. [2] Borzooei, Rajab Ali, et al. “On pseudo BE-algebras.” Discuss. Math. Gen. Algebra Appl. 33, no. 1 (2013): 95-108. Cited on 94, 98 and 103.10.7151/dmgaa.1193
  3. [3] Chaudhry, Muhammad Anwar, and Hafiz Fukhar-ud-din. “Ideals and filters in BCH-algebras.” Math. Japon. 44, no. 1 (1996): 101-111. Cited on 94.
  4. [4] Dudek, Wiesław Aleksander, and Young Bae Jun. “Pseudo-BCI algebras.” East Asian Math. J. 24, no. 2 (2008): 187-190. Cited on 93.
  5. [5] Dymek, Grzegorz. “Atoms and ideals of pseudo-BCI-algebras.” Comment. Math. 52, no. 1 (2012): 73-90. Cited on 101.
  6. [6] Dymek, Grzegorz. “On compatible deductive systems of pseudo-BCI-algebras.” J. Mult.-Valued Logic Soft Comput. 22, no. 1-2 (2014): 167-187. Cited on 104.
  7. [7] Dymek, Grzegorz. “On pseudo-BCI-algebras.” Ann. Univ. Mariae Curie-Skłodowska Sect. A 69, no. 1 (2015): 59-71. Cited on 98.10.17951/a.2015.69.1.59
  8. [8] Georgescu, George, and Afrodita Iorgulescu. “Pseudo-BCK algebras: an extension of BCK algebras.” In: Combinatorics, computability and logic. Proceedings of the Third International Conference on Combinatorics, Computability and Logic, (DMTCS’O1), 97-114. London: Springer-Verlag, 2001. Cited on 93.10.1007/978-1-4471-0717-0_9
  9. [9] Hoo, Cheong Seng. “Filters and ideals in BCI-algebras.” Math. Japon. 36, no. 5 (1991): 987-997. Cited on 94.
  10. [10] Hu, Qing Ping, and Xin Li. “On BCH-algebras.” Math. Sem. Notes Kobe Univ. 11, no. 2 (1983): 313-320. Cited on 93.
  11. [11] Imai, Yasuyuki, and Kiyoshi Iséki. “On axiom systems of propositional calculi. XIV.” Proc. Japan Acad. 42 (1966): 19-22. Cited on 93.10.3792/pja/1195522169
  12. [12] Iorgulescu, Afrodita. Algebras of logic as BCK algebras. Bucharest: Editura ASE, 2008. Cited on 98.
  13. [13] Iorgulescu, Afrodita. “New generalizations of BCI, BCK and Hilbert algebras – Part I.” J. Mult.-Valued Logic Soft Comput. 27, no. 4 (2016): 353-406. Cited on 96.
  14. [14] Iorgulescu, Afrodita. Implicative-groups vs. groups and generalizations. Bucharest: Matrix Rom, 2018. Cited on 94 and 95.
  15. [15] Iséki, Kiyoshi. “An algebra related with a propositional calculus.” Proc. Japan Acad. 42 (1966): 26-29. Cited on 93.10.3792/pja/1195522171
  16. [16] Jun, Young Bae. “Some results on ideals of BCK-algebras.” Sci. Math. Jpn. 53, no. 3 (2001): 477-480. Cited on 94.
  17. [17] Kim, Hee Sik, and Young Hee Kim. “On BE-algebras.” Sci. Math. Jpn. 66, no. 1 (2007): 113-116. Cited on 93.
  18. [18] Kim, Young Hee, and Keum Sook So. “On minimality in pseudo-BCI-algebras.” Commun. Korean Math. Soc. 27, no. 1 (2012): 7-13. Cited on 98.10.4134/CKMS.2012.27.1.007
  19. [19] Kühr, Jan. Pseudo-BCK-algebras and related structures. Olomouc: Univerzita Palackého v Olomouci, 2007. Cited on 98 and 104.
  20. [20] Meng, Biao Long. “CI-algebras.” Sci. Math. Jpn. 71, no. 1 (2010): 11-17. Cited on 93 and 104.
  21. [21] Meng, Biao Long. “On filters in BE-algebras.” Sci. Math. Jpn. 71, no. 2 (2010): 201-207. Cited on 94.
  22. [22] Meng, Biao Long. “Closed filters in CI-algebras.” Sci. Math. Jpn. 71, no. 3 (2010): 367-372. Cited on 94 and 100.
  23. [23] Meng, Jie. “On ideals in BCK-algebras.” Math. Japon. 40, no. 1 (1994): 143-154. Cited on 94.
  24. [24] Meng, Jie, and Shi Ming Wei. “Periodic BCI-algebras and closed ideals.” Math. Japon. 38, no. 3 (1993): 571-575. Cited on 94.
  25. [25] Rezaei, Akbar, Arsham Borumand Saeid, and Yousefi Sikari Saber. “On pseudo-CI algebras.” Soft Comput. 23, no. 13 (2019): 4643-4654. Cited on 94, 98, 104 and 108.10.1007/s00500-018-3428-y
  26. [26] Roh, Eun Hwan, Seon Yu Kim, and Young Bae Jun. “On a problem in BCH-algebras.” Math. Japon. 52, no. 2 (2000): 279-283. Cited on 106.
  27. [27] Walendziak, Andrzej. “On normal filters and congruence relations in BE-algebras.” Comment. Math. 52, no. 2 (2012): 199-205. Cited on 94.
  28. [28] Walendziak, Andrzej. “Pseudo-BCH-algebras.” Discuss. Math. Gen. Algebra Appl. 35, no. 1 (2015): 5-19. Cited on 94, 98, 100, 101 and 103.10.7151/dmgaa.1233
  29. [29] Walendziak, Andrzej. “On ideals of pseudo-BCH-algebras.” Ann. Univ. Mariae Curie-Skłodowska Sect. A 70, no. 1 (2016): 81-91. Cited on 94 and 106.10.17951/a.2016.70.1.81
  30. [30] Walendziak, Andrzej. “Deductive systems and congruences in RM algebras.” J. Mult.-Valued Logic Soft Comput. 30, no. 4-6 (2018): 521-539. Cited on 106.
DOI: https://doi.org/10.2478/aupcsm-2022-0008 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 93 - 116
Submitted on: Jul 30, 2022
Accepted on: Nov 6, 2022
Published on: Jan 30, 2023
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Andrzej Walendziak, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.