Have a personal or library account? Click to login
Almost convergent sequence spaces derived by the domain of quadruple band matrix Cover

Almost convergent sequence spaces derived by the domain of quadruple band matrix

Open Access
|Dec 2020

References

  1. [1] Ahmad, Zaheer, and Mohammad Mursaleen. “Köthe-Toeplitz duals of some new sequence spaces and their matrix maps.” Publ. Inst. Math. (Beograd) (N.S.) 42(56): 57-61. Cited on 156.
  2. [2] Bektaş, Çiğdem Asma, and Rifat Çolak. “On the Köthe-Toeplitz duals of some generalized sets of difference sequences.” Demonstratio Math. 33, no. 4 (2000): 797-803. Cited on 156.
  3. [3] Başar, Feyzi, and Murat Kirişçi. “Almost convergence and generalized difference matrix.” Comput. Math. Appl. 61, no. 3 (2011): 602-611. Cited on 156, 158, 162 and 163.
  4. [4] Başar, Feyzi, and Rifat Çolak. “Almost-conservative matrix transformations.” Doğa Mat. 13, no. 3 (1989): 91-100. Cited on 167.
  5. [5] Başar, Feyzi. “Strongly-conservative sequence-to-series matrix transformations.” Erc Üni Fen Bil Derg. 5, no. 12 (1989): 888-893. Cited on 167.
  6. [6] Başar, Feyzi, and Ihsan Solak. “Almost-coercive matrix transformations.” Rend. Mat. Appl. (7) 11, no. 2: 249-256. Cited on 167.
  7. [7] Başar, Feyzi. “f-conservative matrix sequences.” Tamkang J. Math. 22, no. 2 (1991): 205-212. Cited on 168.
  8. [8] Başar, Feyzi. Summability Theory and Its Applications. Vol. 44 of Nijhoff International Philosophy Series. İstanbul: Bentham Science Publishers, 2012. Cited on 156.
  9. [9] Başar, Feyzi and Hemen Dutta. Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties. Monographs and Research Notes in Mathematics. Boca Raton, London, New York: CRC Press, Taylor & Francis Group, 2020. Cited on 156.10.1201/9781351166928
  10. [10] Başarir, Metin and Mustafa Kayikçi. On the generalized Bm-Riesz difference sequence space and -property. J. Inequal. Appl. 2009, Art. ID 385029. Cited on 168.10.1155/2009/385029
  11. [11] Bektaş, Çiğdem Asma. “On some new generalized sequence spaces.” J. Math. Anal. Appl. 277, no. 2 (2003): 681-688. Cited on 156.
  12. [12] Boos, Johann. Classical and Modern Methods in Summability. Oxford Mathematical Monographs. New York: Oxford University Press Inc., 2000. Cited on 157.
  13. [13] Choudhary, B., and Sudarsan Nanda. Functional Analysis with Applications. New York: John Wiley & sons Inc., 1989. Cited on 156.
  14. [14] Duran, J. Peter. “Infinite matrices and almost-convergence.” Math. Z. 128 (1972): 75-83. Cited on 167.
  15. [15] Et, Mikâil, and Rifat Çolak. “On some generalized difference sequence spaces.” Soochow J. Math. 21, no. 4 (1995): 377-386. Cited on 156.
  16. [16] Et, Mikâil. “On some difference sequence spaces.” Doğa Mat. 17, no. 1 (1993): 18-24. Cited on 156.
  17. [17] Jarrah, Abdullah M., and Eberhard Malkowsky. “BK spaces, bases and linear operators.” Rend. Circ. Mat. Palermo (2) Suppl. No.52 (1998): 177-191. Cited on 162.
  18. [18] Kızmaz, Hüsnü. “On certain sequence spaces.” Canad. Math. Bull. 24, no. 2 (1981): 169-176. Cited on 156 and 158.
  19. [19] King, Jerry Porter “Almost summable sequences.” Proc. Amer. Math. Soc. 17 (1966): 1219-1225. Cited on 167.
  20. [20] Kirişçi, Murat, and Feyzi Başar. “Some new sequence spaces derived by the domain of generalized difference matrix.” Comput. Math. Appl. 60, no. 5 (2010): 1299-1309. Cited on 156.
  21. [21] Lorentz, George Gunther. “A contribution to the theory of divergent sequences.” Acta Math. 80 (1948): 167-190. Cited on 156 and 157.
  22. [22] Maddox, Ivor John. Elements of Functional Analysis. Cambridge, New York, New Rochelle, Melbourne, Sydney: Cambridge University Press, 1988. Cited on 155.
  23. [23] Mursaleen, Mohammad. “Generalized spaces of difference sequences.” J. Math. Anal. Appl. 203, no. 3 (1996): 738-745. Cited on 156.
  24. [24] Mursaleen, Mohammad. Applied Summability Methods. Heidelberg, New York, Dordrecht, London: Springer Briefs, 2014. Cited on 156.
  25. [25] Mursaleen, Mohammad and Başar, Feyzi. Sequence Spaces: Topics in Modern Summability Theory. Boca Raton, London, New York: CRC Press, Taylor & Francis Group, 2020. Cited on 156.10.1201/9781003015116
  26. [26] Öztürk, Ekrem. “On strongly regular dual summability methods.” Comm. Fac. Sci. Univ. Ankara Sér. A1Math. 32, no. 1 (1983): 1-5. Cited on 163.
  27. [27] Siddiqi, Jamil Ahmad. “Infinite matrices summing every almost periodic sequence.” Pacific J. Math. 39 (1971): 235-251. Cited on 163.
  28. [28] Sönmez, Abdulcabbar. “Some new sequence spaces derived by the domain of the triple band matrix.” Comput. Math. Appl. 62, no. 2 (2011): 641-650. Cited on 156.
  29. [29] Sönmez, Abdulcabbar. “Almost convergence and triple band matrix.” Math. Comput. Model. 57, no. 9-10 (2013): 2393-2402. Cited on 156 and 158.
  30. [30] Wilansky, Albert. Summability Through Functional Analysis. Vol. 85 of North-Holland Mathematics Studies. Amsterdam, New York, Oxford: Elsevier Science Publishers, 1984. Cited on 156 and 160.
DOI: https://doi.org/10.2478/aupcsm-2020-0012 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 155 - 170
Submitted on: Jul 17, 2019
Accepted on: Apr 23, 2020
Published on: Dec 31, 2020
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Mustafa Cemil Bişgin, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.