Have a personal or library account? Click to login
Local convergence comparison between two novel sixth order methods for solving equations Cover

Local convergence comparison between two novel sixth order methods for solving equations

Open Access
|Dec 2019

References

  1. [1] Argyros, Ioannis K., Santhosh George and Alberto Á. Magre?án. “Local convergence for multi-point-parametric Chebyshev-Halley-type methods of high convergence order.” J. Comput. Appl. Math. 282 (2015): 215-224. Cited on 6 and 16.10.1016/j.cam.2014.12.023
  2. [2] Argyros, Ioannis K., Santhosh George and Narayan Thapa. Mathematical modeling for the solution of equations and systems of equations with applications. Vol. 1. New York: Nova Publishes, 2018. Cited on 6, 9, 12 and 16.
  3. [3] Argyros, Ioannis K., Santhosh George and Narayan Thapa. Mathematical modeling for the solution of equations and systems of equations with applications. Vol. 2. New York: Nova Publishes, 2018. Cited on 6, 9 and 12.
  4. [4] Argyros, Ioannis K., Munish Kansal and V. Kanwar, V. “Local convergence for multipoint methods using only the first derivative.” SeMA J. 73, no. 4 (2016): 369-378. Cited on 6, 8 and 12.10.1007/s40324-016-0075-z
  5. [5] Candela, V. and A. Marquina. “Recurrence relations for rational cubic methods. I. The Halley method.” Computing 44, no. 2 (1990): 169-184. Cited on 6, 8 and 12.10.1007/BF02241866
  6. [6] Candela, V. and A. Marquina. “Recurrence relations for rational cubic methods. II. The Chebyshev method.” Computing 45, no. 4 (1990): 355-367. Cited on 6 and 12.10.1007/BF02238803
  7. [7] Chen, Jinhai, Ioannis Argyros and Ravi P. Agarwal. “Majorizing functions and two-point Newton-type methods.” J. Comput. Appl. Math. 234, no. 5 (2010): 1473-1484. Cited on 6, 8 and 16.10.1016/j.cam.2010.02.024
  8. [8] Ezquerro, J.A., D. González and M.A. Hernández. “On the local convergence of Newton’s method under generalized conditions of Kantorovich.” Appl. Math. Lett. 26, no. 5 (2013): 566-570. Cited on 6 and 8.10.1016/j.aml.2012.12.012
  9. [9] Gutiérrez, J.M. and M.A. Hernández. “An acceleration of Newton’s method: super-Halley method.” Appl. Math. Comput. 117, no. 2-3, (2001): 223-239. Cited on 6 and 16.10.1016/S0096-3003(99)00175-7
  10. [10] Hernández, M.A. and N. Romero. “On a characterization of some Newton-like methods of R-order at least three.” J. Comput. Appl. Math. 183, no. 1 (2005): 53-66. Cited on 6 and 16.10.1016/j.cam.2005.01.001
  11. [11] Hernández-Verón, M.A. and Eulalia Martínez. “On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions.” Numer. Algorithms 70, no. 2 (2015): 377-392. Cited on 6.10.1007/s11075-014-9952-7
  12. [12] Jarratt, P. “Some fourth order multipoint iterative methods for solving equations.” Math. Comput. 20, no.95 (1966): 434-437. Cited on 6, 12, 13 and 16.10.1090/S0025-5718-66-99924-8
  13. [13] Kantorovich, L.V. and G.P. Akilov. Functional analysis. Oxford-Elmsford, N.Y.: Pergamon Press, 1982. Cited on 6 and 9.
  14. [14] Kumar, Abhimanyu and D.K. Gupta. “Local convergence of Super Halley’s method under weaker conditions on Fréchet derivative in Banach spaces.” J. Anal. (2017) DOI:10.1007/s41478-017-0034-9. Cited on 6 and 8.10.1007/s41478-017-0034-9.Cited68
  15. [15] Madhu, Kalyanasundaram. “Sixth order Newton-type method for solving system of nonlinear equations and its applications.” Appl. Math. E-Notes 17 (2017): 221-230. Cited on 6, 8 and 12.
  16. [16] Parida, P.K. and D.K. Gupta. “Recurrence relations for a Newton-like method in Banach spaces.” J. Comput. Appl. Math. 206, no. 2 (2007): 873-887. Cited on 6, 8, 9 and 16.10.1016/j.cam.2006.08.027
  17. [17] Ren, Hongmin. “On the local convergence of a deformed Newton’s method under Argyros-type condition.” J. Math. Anal. Appl. 321, no. 1 (2006): 396-404. Cited on 6.10.1016/j.jmaa.2005.08.057
  18. [18] Rheinboldt, Werner C. “An adaptive continuation process for solving systems of nonlinear equations. vol. 3 of Banach Center Publ., 129-142. Warsaw: PWN, 1978. Cited on 6 and 12.10.4064/-3-1-129-142
  19. [19] Traub, J. F. Iterative methods for the solution of equations. Englewood Cliffs, N.J.: Prentice-Hall Series in Automatic Computation Prentice-Hall, Inc., 1964. Cited on 6 and 12.
  20. [20] Wang, Xiuhua, Jisheng Kou and Chuanqing Gu. “Semilocal convergence of a sixth-order Jarratt method in Banach spaces.” Numer. Algorithms 57, no. 4 (2011): 441-456. Cited on 6, 8 and 12.10.1007/s11075-010-9438-1
  21. [21] Wu, Qingbiao and Yueqing Zhao. “Third-order convergence theorem by using majorizing function for a modified Newton method in Banach space.” Appl. Math. Comput. 175, no. 2 (2006): 1515-1524. Cited on 6.10.1016/j.amc.2005.08.043
DOI: https://doi.org/10.2478/aupcsm-2019-0001 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 5 - 19
Submitted on: Apr 7, 2018
Accepted on: Jul 7, 2018
Published on: Dec 5, 2019
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Ioannis K. Argyros, Santhosh George, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.