Have a personal or library account? Click to login
Fixed point properties for semigroups of nonexpansive mappings on convex sets in dual Banach spaces Cover

Fixed point properties for semigroups of nonexpansive mappings on convex sets in dual Banach spaces

Open Access
|Feb 2019

References

  1. [1] Atsushiba, Sachiko and Wataru Takahashi. “Nonlinear ergodic theorems without convexity for nonexpansive semigroups in Hilbert spaces.” J. Nonlinear Convex Anal. 14, no. 2 (2013): 209-219. Cited on 70.
  2. [2] Belluce, Lawrence P., and William A. Kirk. “Nonexpansive mappings and fixed-points in Banach spaces.” Illinois J. Math. 11 (1967): 474-479. Cited on 68.10.1215/ijm/1256054569
  3. [3] Berglund, John F., and Hugo D. Junghenn, and Paul Milnes. Analysis on semi-groups. New York: John Wiley & Sons, Inc., 1989. Cited on 73.
  4. [4] Brodskiĭ, M. S. and D. P. Mil’man. “On the center of a convex set.” Doklady Akad. Nauk SSSR (N.S.) 59 (1948): 837-840. Cited on 82.
  5. [5] Fan, Ky. “Minimax theorems.” Proc. Nat. Acad. Sci. U. S. A. 39, (1953): 42-47. Cited on 68.10.1073/pnas.39.1.42
  6. [6] Fan, Ky. “Existence theorems and extreme solutions for inequalities concerning convex functions or linear transformations.” Math. Z. 68 (1957): 205-216. Cited on 68 and 79.10.1007/BF01160340
  7. [7] Granirer, Edmond E. “On amenable semigroups with a finite-dimensional set of invariant means. I.” Illinois J. Math. 7 (1963): 32-48. Cited on 84.10.1215/ijm/1255637480
  8. [8] Granirer, Edmond E. “On amenable semigroups with a finite-dimensional set of invariant means. II.” Illinois J. Math. 7 (1963): 49-58. Cited on 84.10.1215/ijm/1255637481
  9. [9] Hewitt, Edwin and Kenneth A. Ross. Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations. Vol 115 of Die Grundlehren der mathematischen Wissenschaften, New York: Academic Press, Inc., 1963. Cited on 68.
  10. [10] Holmes, R. D., and Anthony To-Ming Lau. “Non-expansive actions of topological semigroups and fixed points.” J. London Math. Soc. 5, no. 2 (1972): 330-336. Cited on 69 and 84.10.1112/jlms/s2-5.2.330
  11. [11] Hsu, R. Topics on weakly almost periodic functions. Ph.D. diss., State University of New York at Buffalo, 1985. Cited on 70.
  12. [12] Lau, Anthomy To-Ming. “Invariant means on almost periodic functions and fixed point properties.” Rocky Mountain J. Math. 3 (1973): 69-76. Cited on 83.10.1216/RMJ-1973-3-1-69
  13. [13] Lau, Anthony To-Ming. “Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups.” Fund. Math. 118, no. 3 (1983): 161-175. Cited on 85.10.4064/fm-118-3-161-175
  14. [14] Lau, Anthony To-Ming. “Amenability and fixed point property for semigroup of nonexpansive mappings.” In Fixed point theory and applications (Marseille, 1989), 303–313. Vol. 252 of Pitman Res. Notes Math. Ser. Harlow: Longman Sci. Tech., 1991. Cited on 83 and 84.
  15. [15] Lau, Anthony To-Ming, and Wataru Takahashi. “Invariant submeans and semi-groups of nonexpansive mappings on Banach spaces with normal structure.” J. Funct. Anal. 142, no. 1 (1996): 79-88. Cited on 70.10.1006/jfan.1996.0144
  16. [16] Lau, Anthony To-Ming, and Wataru Takahashi. “Nonlinear submeans on semi-groups.” Topol. Methods Nonlinear Anal. 22, no. 2 (2003): 345-353. Cited on 70.10.12775/TMNA.2003.044
  17. [17] Lau, Anthony To-Ming, and Yong Zhang. “Fixed point properties of semigroups of non-expansive mappings.” J. Funct. Anal. 254, no. 10 (2008): 2534-2554. Cited on 83.10.1016/j.jfa.2008.02.006
  18. [18] Lau, Anthony To-Ming, and Yong Zhang. “Finite-dimensional invariant subspace property and amenability for a class of Banach algebras.” Trans. Amer. Math. Soc. 368, no. 6 (2016): 3755-3775. Cited on 85.10.1090/tran/6442
  19. [19] Lennard, Chris. C1 is uniformly Kadec-Klee.” Proc. Amer. Math. Soc. 109, no. 1 (1990): 71-77. Cited on 68.10.1090/S0002-9939-1990-0943795-4
  20. [20] Lim, Teck Cheong. “Asymptotic centers and nonexpansive mappings in conjugate Banach spaces.” Pacific J. Math. 90, no. 1 (1980) 135-143. Cited on 69 and 70.10.2140/pjm.1980.90.135
  21. [21] Lim, Teck Cheong. “Characterizations of normal structure.” Proc. Amer. Math. Soc. 43 (1974): 313-319. Cited on 69.10.1090/S0002-9939-1974-0361728-X
  22. [22] Lim, Teck Cheong. “A fixed point theorem for families on nonexpansive mappings.” Pacific J. Math. 53: (1974) 487-493. Cited on 80.10.2140/pjm.1974.53.487
  23. [23] Mizoguchi, Noriko, and Wataru Takahashi. “On the existence of fixed points and ergodic retractions for Lipschitzian semigroups in Hilbert spaces.” Nonlinear Anal. 14, no. 1 (1990): 69-80. Cited on 70.10.1016/0362-546X(90)90136-5
  24. [24] Randrianantoanina, Narcisse. “Fixed point properties of semigroups of nonexpansive mappings.” J. Funct. Anal. 258, no. 11 (2010): 3801-3817. Cited on 68.10.1016/j.jfa.2010.01.022
  25. [25] Wiśnicki, Andrzej. “Amenable semigroups of nonexpansive mappings on weakly compact convex sets.” J. Nonlinear Convex Anal. 17, no. 10 (2016): 2119-2127. Cited on 68.
DOI: https://doi.org/10.2478/aupcsm-2018-0007 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 67 - 87
Submitted on: May 5, 2018
Accepted on: Aug 28, 2018
Published on: Feb 23, 2019
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Anthony To-Ming Lau, Yong Zhang, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.