Have a personal or library account? Click to login
Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions of complex order associated with the Hohlov operator Cover

Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions of complex order associated with the Hohlov operator

Open Access
|Feb 2019

References

  1. [1] Alkahtani, Badr S., and Pranay Goswami, and Teodor Bulboacă. “Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions.” Miskolc Math. Notes 17, no. 2 (2016): 739–748. Cited on 29 and 30.10.18514/MMN.2017.1565
  2. [2] Aspects of Contemporary Complex Analysis. Edited by David A. Brannan and James G. Clunie. London: Academic Press, 1980. Cited on 28.
  3. [3] Brannan, David A., and James Clunie, and William E. Kirwan. “Coefficient estimates for a class of star-like functions.” Canad. J. Math. 22 (1970): 476–485. Cited on 28.10.4153/CJM-1970-055-8
  4. [4] Brannan, David A., and T.S. Taha. “On some classes of bi-univalent functions.” Studia Univ. Babeş-Bolyai Math. 31, no. 2 (1986): 70–77. Cited on 28.
  5. [5] Deniz, Erhan. “Certain subclasses of bi-univalent functions satisfying subordinate conditions.” J. Class. Anal. 2, no. 1 (2013): 49–60. Cited on 29 and 30.10.7153/jca-02-05
  6. [6] Dziok, Jacek, and Hari Mohan Srivastava. “Classes of analytic functions associated with the generalized hypergeometric function.” Appl. Math. Comput. 103, no. 1 (1999): 1–13. Cited on 28.10.1016/S0096-3003(98)10042-5
  7. [7] Dziok, Jacek, and Hari M. Srivastava. “Certain subclasses of analytic functions associated with the generalized hypergeometric function.” Integral Transforms Spec. Funct. 14, no. 1 (2003): 7–18. Cited on 28.10.1080/10652460304543
  8. [8] Frasin, Basem A., and Mohamed K. Aouf. “New subclasses of bi-univalent functions.” Appl. Math. Lett. 24, no. 9 (2011): 1569–1573. Cited on 29.10.1016/j.aml.2011.03.048
  9. [9] Hayami, Toshio, and Shigeyoshi Owa. “Coefficient bounds for bi-univalent functions.” PanAmer. Math. J. 22, no. 4 (2012): 15–26. Cited on 29.
  10. [10] Hohlov, Yuri E. “Hadamard convolutions, hypergeometric functions and linear operators in the class of univalent functions.” Dokl. Akad. Nauk Ukrain. SSR Ser. A no. 7 (1984): 25–27. Cited on 28.
  11. [11] Hohlov, Yu. E. “Convolution operators that preserve univalent functions.” Ukrain. Mat. Zh. 37, no. 2 (1985): 220–226. Cited on 28.10.1007/BF01059717
  12. [12] Jahangiri, Jay M., and Samaneh G. Hamidi. “Coefficient estimates for certain classes of bi-univalent functions.” Int. J. Math. Math. Sci. 2013 (2013): Art. ID 190560. Cited on 28.10.1155/2013/190560
  13. [13] Lewin, Mordechai. “On a coefficient problem for bi-univalent functions.” Proc. Amer. Math. Soc. 18 (1967): 63–68. Cited on 28.10.1090/S0002-9939-1967-0206255-1
  14. [14] Li, Xiao-Fei, and An-Ping Wang. “Two new subclasses of bi-univalent functions.” Int. Math. Forum 7, no. 29-32 (2012): 1495–1504. Cited on 29.
  15. [15] Netanyahu, Elisha. “The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1.” Arch. Rational Mech. Anal. 32 (1969): 100–112. Cited on 28.10.1007/BF00247676
  16. [16] Padmanabhan, Karaikurichi S., and Rajagopalan Parvatham. “Properties of a class of functions with bounded boundary rotation.” Ann. Polon. Math. 31, no. 3 (1975/76): 311–323. Cited on 29.10.4064/ap-31-3-311-323
  17. [17] Panigrahi, Trailokya, and Gangadharan Murugusundaramoorthy. “Coefficient bounds for bi-univalent functions analytic functions associated with Hohlov operator.” Proc. Jangjeon Math. Soc. 16, no. 1 (2013): 91–100. Cited on 29.
  18. [18] Peng, Zhigang, and Gangadharan Murugusundaramoorthy, and T. Janani. “Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator.” J. Complex Anal. 2014 (2014): Art. ID 693908. Cited on 29.10.1155/2014/693908
  19. [19] Srivastava, Hari M., and Akshaya K. Mishra, and Priyabrat Gochhayat. “Certain subclasses of analytic and bi-univalent functions.” Appl. Math. Lett. 23, no. 10, (2010): 1188–1192. Cited on 29 and 32.10.1016/j.aml.2010.05.009
  20. [20] Srivastava, Hari M., and Gangadharan Murugusundaramoorthy and Najundan Magesh. “Certain subclasses of bi-univalent functions associated with the Hohlov operator.” Global J. of Math. Analysis 1, no. 2 (2013): 67–73. Cited on 29 and 32.10.14419/gjma.v1i2.937
  21. [21] Taha, T.S. Topics in Univalent Function Theory, Ph.D. Thesis. London: University of London, 1981. Cited on 28.
DOI: https://doi.org/10.2478/aupcsm-2018-0003 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 27 - 36
Submitted on: Oct 30, 2017
Accepted on: Feb 14, 2018
Published on: Feb 23, 2019
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Gangadharan Murugusundaramoorthy, Teodor Bulboacă, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.