Have a personal or library account? Click to login
*-g-frames in tensor products of Hilbert C*-modules Cover
By: Mohamed Rossafi and  Samir Kabbaj  
Open Access
|Feb 2019

References

  1. [1] Alijani, Azadeh. “Generalized frames with 𝒞∗-valued bounds and their operator duals.” Filomat 29, no. 7 (2015): 1469–1479. Cited on 17.10.2298/FIL1507469A
  2. [2] Alijani, Azadeh, and Mohammad Ali Dehghan. “𝒢-frames and their duals for Hilbert 𝒞∗-modules. Bull. Iranian Math. Soc. 38, no. 3 (2012): 567–580. Cited on 17, 19 and 20.
  3. [3] Asgari, Mohammad Sadegh, and Amir Khosravi. “Frames and bases of subspaces in Hilbert spaces.” J. Math. Anal. Appl. 308, no. 2 (2005): 541–553. Cited on 17.10.1016/j.jmaa.2004.11.036
  4. [4] Bounader, Nordine, and Samir Kabbaj. “∗-g-frames in hilbert 𝒞∗-modules.” J. Math. Comput. Sci. 4, no. 2 (2014) 246–256. Cited on 17 and 19.
  5. [5] Christensen, Ole. An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis. Boston, MA: Birkhäuser Boston, Inc. 2003. Cited on 18.10.1007/978-0-8176-8224-8
  6. [6] Christensen, Ole, and Yonina C. Eldar. “Oblique dual frames and shift-invariant spaces.” Appl. Comput. Harmon. Anal. 17, no. 1 (2004): 48–68. Cited on 17.10.1016/j.acha.2003.12.003
  7. [7] Conway, John B. A course in operator theory. Vol. 21 of Graduate Studies in Mathematics. Providence, RI: American Mathematical Society, 2000. Cited on 18.
  8. [8] Davidson, Kenneth R. 𝒞∗-algebras by example. Vol. 6 of Fields Institute Monographs. Providence, RI: American Mathematical Society, 1996. Cited on 18 and 20.10.1090/fim/006
  9. [9] Duffin, Richard J., and A. C. Schaeffer. “A class of nonharmonic Fourier series.” Trans. Amer. Math. Soc. 72 (1952): 341–366. Cited on 17.10.1090/S0002-9947-1952-0047179-6
  10. [10] Frank, Michael, and David R. Larson. “A module frame concept for Hilbert C∗-modules.” In Contemp. Math.247, 207–233. Providence, RI: Amer. Math. Soc., 1999. Cited on 17.10.1090/conm/247/03803
  11. [11] Gabor, Denis. “Theory of communications.” Journal of the Institution of Electrical Engineers 93 (1946): 429–457. Cited on 17.10.1049/ji-3-2.1946.0076
  12. [12] Hsu, Ming-Hsiu, and Ngai-Ching Wong. “Inner products and module maps of Hilbert 𝒞∗-modules.” Matimyas Matematika 34, no. 1-2 (2011): 56–62. Cited on 24.
  13. [13] Khosravi, Amir, and Behrooz Khosravi. “Frames and bases in tensor products of Hilbert spaces and Hilbert 𝒞∗-modules.” Proc. Indian Acad. Sci. Math. Sci. 117, no. 1 (2007): 1–12. Cited on 18 and 20.10.1007/s12044-007-0001-5
  14. [14] Khosravi, Amir, and Behrooz Khosravi. “Fusion frames and g-frames in Hilbert 𝒞∗-modules.” Int. J. Wavelets Multiresolut. Inf. Process. 6, no. 3 (2008): 433–446. Cited on 17 and 18.10.1142/S0219691308002458
  15. [15] Lance, E. Christopher. Hilbert 𝒞∗-modules. A toolkit for operator algebraists. Vol 210 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1995. Cited on 19 and 20.
  16. [16] Li, Shidong, and Hidemitsu Ogawa. “Pseudoframes for subspaces with applications.” J. Fourier Anal. Appl. 10, no. 4 (2004): 409–431. Cited on 17.10.1007/s00041-004-3039-0
DOI: https://doi.org/10.2478/aupcsm-2018-0002 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 17 - 25
Submitted on: Jul 18, 2017
Accepted on: Feb 12, 2018
Published on: Feb 23, 2019
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Mohamed Rossafi, Samir Kabbaj, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.