Have a personal or library account? Click to login
On some flat connection associated with locally symmetric surface Cover
Open Access
|Dec 2014

References

  1. [1] J. Gancarzewicz, Zarys współczesnej geometrii rózniczkowej, Script, Warszawa 2010. Cited on 24.
  2. [2] S. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. I, Interscience Publishers, a division of John Wiley & Sons, New York-London 1963. Cited on 22.
  3. [3] M. Marvan, On the spectral parameter problem, Acta Appl. Math. 109 (2010), no. 1, 239-255. Cited on 20.
  4. [4] K. Nomizu, T. Sasaki, Affine differential geometry. Geometry of affine immersions. Cambridge Tracts in Mathematics 111, Cambridge University Press, Cambridge, 1994. Cited on 22.
  5. [5] B. Opozda, Locally symmetric connections on surfaces, Results Math. 20 (1991), no. 3-4, 725-743. Cited on 21.
  6. [6] B. Opozda, Some relations between Riemannian and affine geometry, Geom. Dedicata 47 (1993), no. 2, 225-236. Cited on 21 and 22.
  7. [7] R. Sasaki, Soliton equations and pseudospherical surfaces, Nuclear Phys. B 154 (1979), no. 2, 343-357. Cited on 19 and 20.
  8. [8] C.L. Terng, Geometric transformations and soliton equations, Handbook of geometric analysis, No. 2, 301-358, Adv. Lect. Math. (ALM), 13, Int. Press, Somerville, MA, 2010. Cited on 20.
  9. [9] E. Wang, Tzitzéica transformation is a dressing action, J. Math. Phys. 47 (2006), no. 5, 053502, 13 pp. Cited on 20.
DOI: https://doi.org/10.2478/aupcsm-2014-0003 | Journal eISSN: 2300-133X | Journal ISSN: 2081-545X
Language: English
Page range: 19 - 43
Submitted on: Feb 2, 2014
Published on: Dec 11, 2014
Published by: Pedagogical University of Cracow
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2014 Maria Robaszewska, published by Pedagogical University of Cracow
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.