Have a personal or library account? Click to login

The Role of Modern Techniques in Preservation of Archaeological Sites

Open Access
|Sep 2023

References

  1. Febro, D. 3D documentation of cultural heritage sites using drone and photogrammetry: A case study of Philippine UNESCO-recognized Baroque churches. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, vol. 11, no. 8, 2020, pp. 1‒14.
  2. Henderson, J., Lingle, A. M. Preventive conservation in archaeological sites: Uk policy and practice. China Cultural Heritage, no. 2, 2020, pp. 25‒35.
  3. Rebec, K. M., Deanovič, B., Oostwegel, L. Old buildings need new ideas: Holistic integration of conservation-restoration process data using heritage building information modelling. Journal of Cultural Heritage, vol. 55, 2022, pp. 30‒42. https://doi.org/10.1016/j.culher.2022.02.005
  4. Henderson, J., Lingle, A. M. Preventive conservation in archaeological sites. In López Varela, S. L. (ed.), The Encyclopedia of Archaeological Sciences, New Jersey, USA: John Wiley & Sons, 2018, pp. 1‒4. https://doi.org/10.1002/9781119188230.saseas0476
  5. Haddad, N. A., Fakhoury, L. A., Sakr, Y. M. A critical anthology of international charters, conventions & principles on documentation of cultural heritage for conservation, monitoring & management. Mediterranean Archaeology and Archaeometry, vol. 21, no. 1, 2021, pp. 291‒310.
  6. UNESCO World Heritage Centre, 2019, Babylon [online, cited 20.05.2022]. https://whc.unesco.org/en/list/278/
  7. Barrile, V., Bilotta, G., Meduri, G. M., De Carlo, D., Nunnari, A. Laser scanner technology, ground-penetrating radar and augmented reality for the survey and recovery of artistic, archaeological and cultural heritage. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-4/W4, 2017, pp. 123‒127. https://doi.org/10.5194/isprs-annals-IV-4-W4-123-2017
  8. Vilbig, J. M., Sagan, V., Bodine, C. Archaeological surveying with airborne LiDAR and UAV photogrammetry: A comparative analysis at Cahokia Mounds. Journal of Archaeological Science: Reports, vol. 33, 2020. https://doi.org/10.1016/j.jasrep.2020.102509
  9. Grilli, E. Automatic classification of architectural and archaeological 3d data. Alma Mater Studiorum – Università di Bologna, Doctoral dissertation, 2020 [online, cited 20.05.2022]. https://10.6092/unibo/amsdottorato/9347
  10. Stylianidis, E. Photogrammetric survey for the recording and documentation of historic buildings. Cham: Springer, 2020. 270 p. https://doi.org/10.1007/978-3-030-47310-5
  11. Forte, M., Murteira, H. (eds) Digital cities: Between history and archaeology. New York: Oxford University Press, 2020. 368 p. https://doi.org/10.1093/oso/9780190498900.001.0001
  12. Roca, P., Lourenço, P. B., Gaetani, A.Historic Construction and Conservation: Materials, Systems and Damage. New York: Routledge, 2019. 366 p. https://doi.org/10.1201/9780429052767
  13. Zhang, Y., Dong, W. Determining minimum intervention in the preservation of heritage buildings. International Journal of Architectural Heritage, vol. 15, no. 5, 2021, pp. 698‒712. https://doi.org/10.1080/15583058.2019.1645237
  14. Abdo, M., Mohamed, F. O., Orabi, A. F. Theory vs practice, transforming new cities into smart ones. A case study on the city of new Minia. Journal of Advanced Engineering Trends, vol. 41, no. 2, 2021, pp. 219‒245. https://doi.org/10.21608/jaet.2021.66385.1094
  15. Jordan-Palomar, I., Tzortzopoulos, P., García-Valldecabres, J., Pellicer, E. Protocol to manage heritage-building interventions using heritage building information modelling (HBIM). Sustainability, vol. 10, no. 4, 2018, p. 908. https://doi.org/10.3390/su10040908
  16. Akhter, H., Promei, N. The methods and recent invented tools and techniques used in archaeology for delicately preserving the past for the future. Archaeological Discovery, vol. 6, no. 4, 2018, pp. 338‒354. https://doi.org/10.4236/ad.2018.64017
  17. Leucci, G. Nondestructive testing for archaeology and cultural heritage. Cham: Springer, 2019. 241 p. https://doi.org/10.1007/978-3-030-01899-3
  18. Saaty, T., Tavana, M. The encyclicon ‒ Volume 4: A dictionary of complex decisions using the analytic network process. Pittsburgh: RWS Publications, 2021. 919 p.
  19. Rasol, M., Pérez-Gracia, V., Fernandes, F. M., Pais, J. C., Santos-Assunçao, S., Roberts, J. S. Ground penetrating radar system: Principles. In: S. D’Amico and V. Venuti (eds.), Handbook of Cultural Heritage Analysis. Cham: Springer, 2022, pp. 705‒738. https://doi.org/10.1007/978-3-030-60016-7_25
  20. Elfadaly, A., Lasaponara, R. On the use of satellite imagery and gis tools to detect and characterize the urbanization around heritage sites: The case studies of the Catacombs of Mustafa Kamel in Alexandria, Egypt and the Aragonese castle in Baia, Italy. Sustainability, vol. 11, no. 7, 2019, p. 2110. https://doi.org/10.3390/su11072110
  21. Gallozzi, A., Senatore, L. J., Strollo, R. M. An overview on robotic applications for cultural heritage and built cultural heritage. SCIRES-IT SCIentific RESearch and Information Technology, vol. 9, no. 2, 2019, pp. 47‒56. https://doi.org/10.2423/i22394303v9n2p47
  22. Piroddi, L., Calcina, S. V., Trogu, A., Ranieri, G. Automated resistivity profiling (ARP) to explore wide archaeological areas: The prehistoric site of Mont’e Prama, Sardinia, Italy. Remote Sensing, vol. 12, no. 3, 2020, p. 461. https://doi.org/10.3390/rs12030461
  23. Dabbs, M. Spotlight: Magnetometry and resistivity, 2014 [online, cited 20.05.2022]. https://blogs.kent.ac.uk/digthewolds/2014/09/13/13914-spotlight-magnetometry-and-resistivity/
  24. Biagetti, S., Alcaina-Mateos, J., Ruiz-Giralt, A., Lancelotti, C., Groenewald, P., Ibañez-Insa, J., Gur-Arie, S., Morton, F., Merlo, S. Identifying anthropogenic features at Seoke (BOTSWANA) using pXRF: Expanding the record of southern african stone walled sites. PLOS ONE, vol. 16, no. 5, 2021, p. e0250776. https://doi.org/10.1371/journal.pone.0250776
  25. Advantages and disadvantages of lidar [online, cited 20.05.2022]. https://lidarradar.com/info/advantages-and-disadvantages-of-lidar
  26. Webb, E. K., Robson, S., MacDonald, L., Garside, D., Evans, R. Spectral and 3d cultural heritage documentation using a modified camera. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2, 2018, pp. 1183‒1190. https://doi.org/10.5194/isprs-archives-XLII-2-1183-2018
  27. Oseni, A. E., Durowoju, A. S. Application of GIS in electricity distribution: A case study of part of Ashamu Layout Kosobo, Oyo east local government area, Oyo state Nigeria. Nigerian Journal of Environmental Sciences and Technology, vol. 4, no. 2, 2020, pp. 370‒381. https://doi.org/10.36263/nijest.2020.02.0106
  28. Blaha, J., Novotny, J. Report assessing innovative restoration techniques, technologies and materials used in conservation, 2018 [online, cited 20.05.2022]. https://www.interreg-central.eu/Content.Node/D.T1.3.1-Report-innovative-techniques-technologies-materials.pdf
  29. Dario, C. A method to obtain precise determinations of relative humidity using thin film capacitive sensors under normal or extreme humidity conditions. Journal of Cultural Heritage, vol. 37, May-June 2019, pp. 166‒169. https://doi.org/10.1016/j.culher.2018.11.003
  30. Themistocleous, K., Danezis, C., Gikas, V. Monitoring ground deformation of cultural heritage sites using sar and geodetic techniques: The case study of Choirokoitia, Cyprus. Applied Geomatics, vol. 13, no. 1, 2021, pp. 37‒49. https://doi.org/10.1007/s12518-020-00329-0
  31. Mazzaglia, A. The information system of pompeii sustainable preservation project. A tool for the collection, management and sharing of knowledge useful for conservation and renovation of archaeological monuments. Environmental Sciences Proceedings, vol. 10, no. 1, 2021, p. 14. https://doi.org/10.3390/environsciproc2021010014
  32. Cabello-Briones, C., Prieto, A. J., Ortiz, P. Determination of the technical suitability of shelters for archaeological sites using fuzzy logic. Journal of Cultural Heritage, vol. 48, March-April 2021, pp. 211‒226. https://doi.org/10.1016/j.culher.2020.11.006
  33. Little, C., Bec, A., Moyle, B. D., Patterson, D. Innovative methods for heritage tourism experiences: creating windows into the past. Journal of Heritage Tourism, vol. 15, no. 1, 2020, pp. 1‒13. https://doi.org/10.1080/1743873X.2018.1536709
  34. Ivanova, B., Vassilev, T. A m ixed r eality a pproach t o visualizing cultural heritage artefacts: Mixed reality approach to cultural heritage, International Conference on Computer Systems and Technologies ‘21: Association for Computing Machinery, 2021, pp. 107–111. https://doi.org/10.1145/3472410.3472432
  35. Heidentor [online, cited 20.05.2022]. https://engineeringandarchitecture.com/heidentor/
  36. Colucci, E., De Ruvo, V., Lingua, A., Matrone, F., Rizzo, G. HBIM-GIS integration: From IFC to CityGML standard for damaged cultural heritage in a multiscale 3D GIS. Applied Sciences, vol. 10, no. 4, 2020, p. 1356. https://doi.org/10.3390/app10041356
DOI: https://doi.org/10.2478/aup-2023-0012 | Journal eISSN: 2255-8764 | Journal ISSN: 1691-4333
Language: English
Page range: 131 - 141
Submitted on: May 26, 2022
Accepted on: Jul 17, 2023
Published on: Sep 16, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Mahmood Chabuk, Shatha Al-Amiri, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.