Debailleux, L. Schmidt hammer rebound hardness tests for the characterization of ancient fired clay bricks. International Journal of Architectural Heritage, vol. 13, no. 2, 2019, pp. 288–297. https://doi.org/10.1080/15583058.2018.1436204
Martínez-Soto, F., Ávila, F., Puertas, E., Gallego, R. Spectral analysis of surface waves for non-destructive evaluation of historic masonry buildings. Journal of Cultural Heritage, vol. 52, 2021, pp. 31–37. https://doi.org/10.1016/j.culher.2021.09.002.
Cotič, P., Jagličić, Z., Bosiljkov, V. Validation of non-destructive characterization of the structure and seismic damage propagation of plaster and texture in multi-leaf stone masonry walls of cultural-artistic value. Journal of Cultural Heritage, vol. 15, no. 5, 2014, pp. 490–498. https://doi.org/10.1016/j.culher.2013.11.004.
Shrestha, R., Sfarra, S., Ridolfi, S., Gargiulo, G., Kim, W. A numerical–thermal–thermographic NDT evaluation of an ancient marquetry integrated with X-ray and XRF surveys. Journal of Thermal Analysis awnd Calorimetry, vol. 147, 2022, pp. 2265–2279. https://doi.org/10.1007/s10973-021-10571-2
Sfarra, S., Bendada, A., Ibarra-Castanedo, C., Ambrosini, D., Maldague, X. Santa Maria di Collemaggio Church (L’Aquila, Italy): Historical Reconstruction by Non-Destructive Testing Techniques. International Journal of Architectural Heritage, vol. 9, no. 4, 2015, pp. 367–390. https://doi.org/10.1080/15583058.2013.794376
De Fino, M., Scioti, A., Rubino, R., Fatiguso, F. Assessment of historic buildings by radar techniques. Structural Survey, vol. 34, no. 1, 2016, pp. 73–94. https://doi.org/10.1108/SS-07-2015-0035
Gil, E., Mas, Á., Lerma, C., Torner, M. E., Vercher, J. Non-destructive Techniques Methodologies for the Detection of Ancient Structures under Heritage Buildings. International Journal of Architectural Heritage, vol. 15, no. 10, 2021, pp. 1457–1473. https://doi.org/10.1080/15583058.2019.1700320
Spodek, J., Rosina, E. Application of Infrared Thermography to Historic Building Investigation. Journal of Architectural Conservation, vol. 15 no. 1, 2009, pp. 65–81. https://doi.org/10.1080/13556207.2009.10785040
Pehlivan, E. Archaeological Evaluation and Provenance Analysis of Apollon’s Torso in Sivas Archaeological Museum. Mediterranean Archaeology and Archaeometry, vol. 22, no. 1, 2022, pp. 97–109.
Pehlivan, E. A Comprehensive Approach of XRF and Analogical Study of a Phrygian Fibula. Mediterranean Archaeology and Archaeometry, vol. 22, no. 3, 2022, pp. 265–279.
Rix, H., Emmitt, S. Issues of authenticity when conserving historic imitative crafts. Journal of Architectural Conservation, vol. 1, no. 19, 2022, pp. 1355–6207. https://doi.org/10.1080/13556207.2022.2066389
Blessley, K., Young, C., Nunn, J., Coddington, J., Shepard, S. The Feasibility of Flash Thermography for the Examination and Conservation of Works of Art. Studies in Conservation, vol. 55, no. 2, 2010, pp. 107–120. https://doi.org/10.1179/sic.2010.55.2.107
Leone, G., De Vita, A., Consumi, M., Tamasi, G., Bonechi, C., Donati, A., Rossi, C., Magnani, A. Comparison of Original and Modern Mortars at the Herculaneum Archaeological Site. Conservation and Management of Archaeological Sites, vol. 21, no. 2, 2019, pp. 92–112. https://doi.org/10.1080/13505033.2019.1638139
Sandak, J., Sandak, A., Riggio, M. Characterization and Monitoring of Surface Weathering on Exposed Timber Structures with a MultiSensor Approach. International Journal of Architectural Heritage, vol. 9, no. 6, 2015, pp. 674–688. https://doi.org/10.1080/15583058.2015.1041190
Kilic, G. Using advanced NDT for historic buildings: Towards an integrated multidisciplinary health assessment strategy. Journal of Cultural Heritage, vol. 16, 2015, pp. 526–535. https://doi.org/10.1016/j.culher.2014.09.010
Luziński, R., Ziemkiewicz, J., Synaszko, P., Żyluk, A., Dragan, K. A Comparison of Composite Specimens Damage Area Measurements Performed using Pulsed Thermography and Ultrasonic NDT Methods. Fatigue of Aircraft Structures, vol. 11, 2019, pp. 68–77. https://doi.org/10.2478/fas-2019-0007
Costa, V. S., Silveira, A. M., Torres, A. S. Evaluation of Degradation State of Historic Building Facades through Qualitative and Quantitative Indicators: Case Study in Pelotas, Brazil. International Journal of Architectural Heritage, 2021, pp. 1–24. https://doi.org/10.1080/15583058.2021.1901161
Kuzucu, K. Osmanlı’dan Cumhuriyete Şehircilik, Mimarî ve Eğitim Anlayışındaki Değişmeler Bağlamında Sivas Kongresi. Ankara Üniversitesi Türk İnkılâp Tarihi Enstitüsü Atatürk Yolu Dergisi, vol. 37–38, 2006, pp. 103–125. https://doi.org/10.1501/Tite_0000000063
Karataş, N. Sivas Mekteb-i İdadisi: Kuruluşu ve Tarihi Gelişimi. Master Thesis, Sivas: SCU Institute of Social Sciences, Department of History, 2021, pp. 28–44.
Mutlu, N. Y. Sivas İ’dadisi /Sivas Lisesi (Osmanlı Devletinin 19. ve 20. Asırdaki Eğitim Hamlesi içinde Sivas’ın Yeri ve Sivas Lisesi’nin Başlangıcı ile Sivaslı Bir Öğretmenin Meslek Hayatı). Ankara: 2007, pp. 58–59.
Mert, T. Sivas Îdadîsi ve Sivas Sultanîsi‘nden Sivas Lisesine; Arşivde Yeni Bulunan Belgeler Lise’nin Temellerine Işık Tutuyor. Hayat Ağacı, vol. 14, 2009, pp. 43–56.
Selvi, H. Sivas Kongresi: Türkiye Diyanete Vakfı İslam Ansiklopedisi. İstanbul: İSAM, vol. 37, 2009, pp. 284–285. [online, cited 01.08.2022]. https://islamansiklopedisi.org.tr/sivas-kongresi
Sancaktar, F. M. Determinations About the Delegates of The Sivas Congress (4–11 September 1919). Turkish Journal of History, vol. 71, 2020, pp. 473–496. https://doi.org/10.26650/TurkJHist.2020.022
Duymaz, A. Ş. Osmanlı Modernleşmesinde Sivas’ta Bir Eğitim Kurumu: Sivas İdadisi. Proceedings of the Ottoman Era Sivas Symposium, May 21–25, 2007, Sivas, Turkey, vol. 3, Sivas: Sivas Governorship Publication, 2007, pp. 126–127.
Duymaz, A. Ş. ll. Abdülhamid Dönemi imar faaliyetleri (Türkiye örnekleri). Doctoral Thesis, Süleyman Demirel University, Institute of Social Sciences, Department of History, 2003, pp. 139–140.
Turkmen, K. Osmanlı’da Modern Eğitimin Günümüze Ulaşamayan Bir Temsilcisi: İnşa Süreci ve Mimari Detayları ile Kırşehir Mekteb-i İdadisi. Art-Sanat, vol. 17, 2022, pp. 529–550. https://doi.org/10.26650/artsanat.2022.17.893286
Özçınar, G. A. The Restoration Proposal of Kastamonu Mektebi Idadi Building. Master Thesis, Gazi University Institute of Scıence and Technology, Ankara, Turkey, 2006, pp. 124–136.
Bulut, M. Sivas’taki Geç Dönem Osmanlı Kamu Yapıları. Master Thesis, Selcuk University, Institute of social sciences, Department of art history, Konya, Turkey, 2006. 197 p.
Saltresearch, Front facade of Sivas High School, 2022 [online]. Saltresearch [cited 31.08.2022]. https://archives.saltresearch.org/handle/123456789/114941?locale=en.
Shackley, M. S. X-Ray Fluorescence (XRF): Applications in Archaeology. In: C. Smith (ed.), Encyclopedia of Global Archaeology, New York: Springer, 2014, pp. 7933–7938. https://doi.org/10.1007/978-1-4419-0465-2_1305
Pecchioni, E., Magrini, D., Cantisani, E., Fratini, F., Garzonio, C. A., Nosengo, C. Santo, A. P., Vettori, S. A Non-Invasive Approach for the Identification of “Red Marbles” from Santa Maria Del Fiore Cathedral (Firenze, Italy). International Journal of Architectural Heritage, vol. 15, no. 3, 2021, pp. 494–504. https://doi.org/10.1080/15583058.2019.1629045
Shackley, M. S., Dillian, C. Thermal and environmental effects on obsidian geochemistry: experimental and archaeological evidence. In: J.M. Loyd, T.M. Origer & D.A. Fredrickson (eds.), The effects of fire and heat on obsidian. Sacramento: Cultural resources publication, anthropology-fire history, U.S. Bureau of Land Management, 2002, pp. 117–134.
Shackley, M. S. An introduction to X-ray fluorescence (XRF) analysis in archaeology. In: M.S. Shackley (ed.), X-ray fluorescence spectrometry (XRF) in geoarchaeology. New York: Springer, 2011, pp. 7–44.
Liritzis, I., Zacharias, N. Portable XRF of archaeological artefacts: current research potentials and limitations. In: S. Shackley (ed.), X Ray Flourescence Spectrometry in GeoArchaeology, Natural Sciences in Archaeology Series. North America: Springer 2010, pp. 109–142.
Saverwyns, S., Currie, C., Lamas-Delgado, E. Macro X-ray fluorescence scanning (MA-XRF) as tool in the authentication of paintings. Microchemical Journal, vol. 137, 2018, pp. 139–147. https://doi.org/10.1016/j.microc.2017.10.008.
Donais, M. K., Alrais, M., Konomi, K., George, D., Ramundt, W. H., Smith, E. Energy dispersive X-ray fluorescence spectrometry characterization of wall mortars with principal component analysis: Phasing and ex situ versus in situ sampling. Journal of Cultural Heritage, vol. 43, 2020, pp. 90–97. https://doi.org/10.1016/j.culher.2019.12.007
Trojek, T., Hložek, M. Confocal XRF imaging for determination of arsenic distribution in a sample of historic plaster. Radiation Physics and Chemistry, 2022, 110201. https://doi.org/10.1016/j.radphyschem.2022.110201
Karaman, K., Erçıkdı, B., Cihangir, F., Kesimal, A. Examining the Schmidt Hammer Methods in Estimation of the Uniaxial Compressive Strength. Türkiye 22. Uluslararası Madencilik Kongresi ve Sergisi, 11–13 Mayıs 2011, Ankara [online, cited 01.08.2022]. https://www.researchgate.net/publication/267781874
Mohammed, D. A., Alshkane, Y. M., Hamaamin, Y. A. Reliability of empirical equations to predict uniaxial compressive strength of rocks using Schmidt hammer. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, vol. 14, no. 4, 2020, pp. 308–319. https://doi.org/10.1080/17499518.2019.1658881
Kong, F., Xue, Y., Qiu, D., Gong, H., Ning, Z. Effect of grain size or anisotropy on the correlation between uniaxial compressive strength and Schmidt hammer test for building stones. Construction and Building Materials, vol. 299, 2021, 123941. https://doi.org/10.1016/j.conbuildmat.2021.123941
Vasanelli, E., Colangiuli, D., Calia, A., Sbartaï, Z., Breysse, D. Combining noninvasive techniques for reliable prediction of soft stone strength in historic masonries. Constr. Build. Mater. vol. 146, 2017, pp. 744–754. https://doi.org/10.1016/j.conbuildmat.2017.04.146
Sy´kora, M., Diamantidis, D., Holicky´, M., Marková, J., Rózsás, Á. Assessment of compressive strength of historic masonry using non-destructive and destructive techniques. Construction and Building Materials, vol. 193, 2018, pp. 196–210. https://doi.org/10.1016/j.conbuildmat.2018.10.180
Parsajoo, M., Armaghani, D. J., Mohammed, S. A., Khari, M., Jahandari, S. Tensile strength prediction of rock material using non-destructive tests: A comparative intelligent study. Transportation Geotechnics, vol. 31, 2021, 100652. https://doi.org/10.1016/j.trgeo.2021.100652
Poblet, J., Bulnes, M., Uzkeda, H., Magán, M. Using the Schmidt hammer on folds: An example from the Cantabrian Zone (NW Iberian Peninsula). Journal of Structural Geology, vol. 155, 2022, 104512. https://doi.org/10.1016/j.jsg.2022.104512
Deere, D. U., Miller, P. R. Engineeeing Classification and Index Proporties For Intact Rock. Technical Report No. Afwl-Tr-65-116, New Mexico: Air Force Weapons Laboratory Research and Technology Division, 1966. 300 p.
De Beer, J. H. Subjective classification of the hardness of rocks and the associated shear strength. Proceedings of 4th reg. cong. Afr. soil mechanical found engineering, Cape Town, 1967, pp. 396–398.
Selby, M. J. A r ock m ass s trength c lassification f or geomorphic purposes: with test from Antarctica and New Zealand. Zeitschrift für Geomorphologie, 1980, vol. 24, pp. 31–51.
Saptono, S., Kramadibrata, S., Sulistianto, B. Using the Schmidt Hammer on Rock Mass Characteristic in Sedimentary Rock at Tutupan Coal Mine. Procedia Earth and Planetary Science. vol. 6, 2013, pp. 390–395. https://doi.org/10.1016/j.proeps.2013.01.051
Atkinson, R. H. Hardness Tests for Rock Characterization. In: J.A. Hudson (ed.), Comprehensive Rock Engineering, vol. 3: Rock testing and site characterization – Principles, practise and projects, Oxford: Pergamon Press, 1993, p. 107.
Kumral, M., Şans, G., Yalçın, C., Kaya, M., Budakoğlu, M. The Effects of Physical And Chemical Properties On The Formation Of Historical Kufeki Stone In Catalca (Istanbul). Omer Halisdemir University Journal of Engineering Sciences, vol. 8, no. 1, 2019, pp. 278–287.
Sert, M., Gürsoy, M., Arsoy, Z. Determination of Relations Between CaO, MgO and SiO2 Contents and Knoop Hardness Values of Natural Stones. Kafkas University Institute of Natural and Applied Science Journal, vol. 10, no. 2, 2017, pp. 162–171.
Çobanoğlu, İ., Koralay, T., Kaya, A., Çelik, S. B. Investigation the Usability of Limestone Blocks in Karatepe Melange (Kaklık-Denizli) In Production of Concrete Aggregate. 6th İnternational Aggregate Symposium. Sivas, Turkey, October 6–7, 2011, pp. 215–223.
Elçi, H., Türk, N., İşintek, İ. İzmir Karaburun Yarımadasındaki Farklı Kireçtaşlarının Beton Agregası Olarak Değerlendirilmesi. Jeoloji Mühendisliği Dergisi, vol. 38, no. 2, 2014, pp. 103–134.
Gözübol, A. M., Aysal, N. Cebeciköy Kireçtaşı Ocaklarında Litolojik ve Yapısal Kökenli İşletme Sınırları. İstanbul Yerbilimleri Dergisi, vol. 21, no. 1, 2008, pp. 25–35.
Evcin, A., Ersoy, B., Uygunoğlu, T., Güneş, İ. The effect of different mineral additives on non-wettability and surface energy of epoxy floor coating. Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 33, no. 2, 2018, pp. 581–590. https://doi.org/10.17341/gazimmfd.416368
Atılgan, İ. Investigation of The Effect of Particle Size of Limestone Added to Lignite on Emission Behaviour in A Fluidized Bed Combustion System. G.U. Journal of Science, vol. 17, no. 4, 2004, pp. 89–101.
Akyol, A. A, Kadıoğlu, Y. K., Demirci, Ş. Archaeometrical Studies on Wall Paintings of Zeugma (Gaziantep) Ancient Siteabstract. Anadolu University Journal of Science and Technology –A Applied Sciences and Engineering, vol. 12, no. 1, 2011, pp. 37–56.
Hofmann, M., Ragué Schleyer, P. Acid Rain: Ab Initio Investigation of the H2OSO3 Complex and Its Conversion into H2SO4. J. Am. Chem. Soc. vol. 116, 1994, pp. 4947–4952. https://doi.org/10.1021/ja00090a045
Fleig, D., Andersson, K., Normann, F., Johnsson, F. SO3 Formation under Oxyfuel Combustion Conditions. Ind. Eng. Chem. Res., 50, 2011, pp. 8505–8514. https://doi.org/10.1021/ie2005274
La Russa, M. F., Fermo, P., Comite, V., Belfiore, C. M., Barca, D., Cerioni, A., De Santis, M., Barbagallo, F. L., Ricca, M., Ruffolo, S. A. The Oceanus statue of the Fontana di Trevi (Rome): The analysis of black crust as a tool to investigate the urban air pollution and its impact on the stone degradation. Science of The Total Environment, vol. 593–594, 2017, pp. 297–309. https://doi.org/10.1016/j.scitotenv.2017.03.185
Belfiore, C. M., Barca, D., Bonazza, A., Comite, V., La Russa, M. F., Pezzino, A., Ruffolo, S. A., Sabbioni, C. Application of spectrometric analysis to the identification of pollution sources causing cultural heritage damage. Environ Sci Pollut Res, vol. 20, 2013, pp. 8848–8859. https://doi.org/10.1007/s11356-013-1810-y
Camuffo, D., Del Monte, M. Sabbioni, C. Origin and growth mechanisms of the sulfated crusts on urban limestone. Water Air Soil Pollut., vol. 19, 1983, pp. 351–359. https://doi.org/10.1016/j.ibiod.2020.105031
Beadman, K., Scarrow, J. Laser Cleaning Lincoln Cathedral’s Romanesque Frieze. Journal of Architectural Conservation, vol. 4, no. 2, 1998, pp. 39–53. https://doi.org/10.1080/13556207.1998.10785215
Ruffolo, S. A., Comite, V., La Russa, M. F., Belfiore, C. M., Barca, D., Bonazza, A., Crisci, G.M., Pezzino, A., Sabbioni, C. An analysis of the black crusts from the Seville Cathedral: A challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources. Science of The Total Environment, vol. 502, 2015, pp. 157–166, https://doi.org/10.1016/j.scitotenv.2014.09.023
Comite, V., Ricca, M., Ruffolo, A. S., Graziano, F. S., Rovella, N., Rispoli, C., Gallo, C., Randazzo, L., Barca, D., Cappelletti, P., La Russa, M. F. Multidisciplinary Approach for Evaluating the Geochemical Degradation of Building Stone Related to Pollution Sources in the Historical Center of Naples (Italy). Appl. Sci. vol. 10, no. 12, 2020, p. 4241. https://doi.org/10.3390/app10124241
Andreolli, M., Lampis, S., Bernardi, P., Calò, S., Vallini, G. Bacteria from black crusts on stone monuments can precipitate CaCO3 allowing the development of a new bio-consolidation protocol for ornamental stone. International Biodeterioration & Biodegradation, vol. 153, 2020. 105031. https://doi.org/10.1016/j.ibiod.2020.105031
Ortega-Morales, B. O., Gaylarde, C. C. Bioconservation of Historic Stone Buildings—An Updated Review. Applied Sciences. vol. 11, no. 12, 2021, p. 5695. https://doi.org/10.3390/app11125695
Comite, V., Miani, A., Ricca, M., La Russa, M., Pulimeno, M., Fermo, P. The impact of atmospheric pollution on outdoor cultural heritage: an analytic methodology for the characterization of the carbonaceous fraction in black crusts present on stone surfaces. Environmental Research, vol. 201, 2021, 111565. https://doi.org/10.1016/j.envres.2021.111565
Álvarez, F. F., Rodrýìguez, M. T., Espinosa, F. A. J., Dabán, A. G. Physical speciation of arsenic, mercury, lead, cadmium and nickel in inhalable atmospheric particles. Analytica Chimica Acta, vol. 524, no. 1–2, 2004, pp. 33–40. https://doi.org/10.1016/j.aca.2004.02.004
Councell, T. B., Duckenfield, K. U., Landa, E. R., Callender, E. Tire-wear particles as a source of zinc to the environment. Environmental Science and Technology, vol. 38, 2004, pp. 4206–4214. https://doi.org/10.1021/es034631f
Geiger, A., Cooper, J. Overview of Airborne Metals Regulations, Exposure Limits, Health Effects, and Contemporary Research. Portland: Cooper Environmental Services. 2010. 56 p.
Morajkar, P. P., Abdrabou, M. K., Raj, A., Elkadi, M., Stephen, S., Ali, M. I. Transmission of trace metals from fuels to soot particles: An ICP-MS and soot nanostructural disorder study using diesel and diesel/Karanja biodiesel blend. Fuel, vol. 280, 2020, 118631. https://doi.org/10.1016/j.fuel.2020.118631
Sumner, P., Nel, W. The effect of moisture on schmidt hammer rebound: Tests on rock samples from Marion Island and South Africa. Earth Surf. Proc. Landforms, vol. 27, 2002, pp. 1137–1142. https://doi.org/10.1002/esp.402
Matthews, J.A., Winkler, S., Wilson, P. Age and origin of ice-cored moraines In Jotunheimen and Breheimen, Southern Norway: insights from Schmidt-Hammer exposure-age dating. Geografiska Annaler: Series A, Physical Geography, vol. 96, 2014, pp. 531–548. https://doi.org/10.1111/geoa.12046
Engineering geology field manual. U.S. Department of the Interior Bureau of Reclamation, Washington: US Government Printing Office, Second edition, vol. 1, 1998. 450 p.
Katz, O., Rechesa, Z., Roegiersc, J. C. Evaluation of mechanical rock properties using a Schmidt hammer. Int. J. Rock. Mech. Min. Sci. vol. 37, no. 4, 2000, pp. 723–728. https://doi.org/10.1016/S1365-1609(00)00004-6
Kahraman, S. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int. J. Rock. Mech. Min. Sci., vol. 38, no. 7, 2001, pp. 981–994. https://doi.org/10.1016/S1365-1609(01)00039-9
Fener, M., Kahraman, S., Bilgil, A., Gunaydin, O. A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock. Mech. Rock. Eng. vol. 38, no. 4, 2005, pp. 329–343. https://doi.org/10.1007/s00603-005-0061-8
Kılıç, A., Teymen, A. Determination of mechanical properties of rocks using simple methods. Bull. Eng. Geol. Environ. vol. 67, 2008, pp. 237–244. https://doi.org/10.1007/s10064-008-0128-3
Yagiz, S. Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull. Eng. Geol. Environ. vol. 68, no. 1, 2009, pp. 55–63. https://doi.org/10.1007/s10064-008-0172-z
China NsotPsRo. Standard for engineering classification of rock masses (GB50218-94). Beijing: China Planning Press, 1995 [online, cited 01.08.2022]. https://www.codeofchina.com/standard/GB50218-1994.html
Wang, H ., L in, H ., C ao, P. Correlation of UCS Rating with Schmidt Hammer Surface Hardness for Rock Mass Classification. Rock. Mech. Rock. Eng., vol. 50, 2017, pp. 195–203. https://doi.org/10.1007/s00603-016-1044-7
Teymen, A. Estimation of uniaxial compressive strength of very low-medium abrasive rocks from Cerchar abrasiveness index. Pamukkale Univ Muh Bilim Dergi, vol. 26, no. 6, 2020, pp. 1154–1163.
Erözmen, T., Ündül, Ö., Aysal, N. Evaluation for the effects of different cleaning techniques applied on Küfeki Stones Used in historical buildings in İstanbul. Pamukkale University Journal of Engineering Sciences, vol. 26, no. 8, 2020, pp. 1413–1418.
Şahin G üçhan, N ., Bilecen, K ., Warscheid, T., Topal, T., Son, Ç., Çıplak, E. S., Ersöz, T., Kaya, Y., Öztürk, M. Tarihi Kireçtaşlarını Koruma Müdahalelerinde Uygulamak Üzere Kalsit Üreten Bakterilerle Biyolojik Harç Geliştirilmesi. Master Thesis, Program Kodu: 1001, Proje No: 115M188, Middle East Technical University, Ankara, Turkey, 2019. 110 p. [online, cited 01.08.2022]. file:///C:/Users/AK00478/Downloads/TWpBek9UZzQ.pdf
Ünal, M., Beyaz, T. Hasankeyf Kireçtaşlarının Suda Dağılmaya ve Tuz Kristalleşmesine Karşı Direncinin Araştırılması. Engineering Sciences, vol. 14, no. 2, 2019, pp. 55–62.
Koç, E., Demir Şahin, D., Yılmaz, A. O. Examination of Indirect Tensile and Point Load Strength on Different Originated Rock Samples Taken Between Trabzon-Maçka Areas. ROCKMEC’2014-XI th Regional Rock Mechanics Symposium, Afyonkarahisar, Turkey, May 7–9, 2014 [online, cited 01.08.2022]. http://www.rocknet-japan.org/events-announcement/419/
Karaman, K., Kesimal, A. Kayaçların Tek Eksenli Basınç Dayanımı Tahmininde Nokta Yükü Deney Yöntemleri ve Porozitenin Değerlendirilmesi. Madencilik, vol. 51, no. 4, 2012, pp. 3–14.
Dipova, N. Investigation of the Relationships Between Abrasiveness and Strength Properties of Weak Limestones Along a Tunnel Route. Jeoloji Mühendisliği Dergisi, vol. 36, no. 1, 2012, pp. 23–34.
Tüysüz, L. İstanbul’da Açılacak Metro Tünellerinde Tbm (Tünel Açma Makinesi) Performansını Tahmin Etmek İçin Yeni Bir Yaklaşım. Master Thesis, Istanbul Technical University, Graduate School of Natural and Applied Sciences, Department of Mining Engineering, 2012. 19 p.
Karaman, K., Kesimal, A. Evaluation of the Relationship between Uniaxial Compressive Strength and Ultrasonic Pulse Velocity of Rocks. Journal of Underground Resources, vol. 2, no. 4, 2013, pp. 9–17.
Ocak, İ. Tek Eksenli Basınç Dayanımını Kullanarak Kaya Malzemesinin Elastisite Modülünün Tahmini. İstanbul Yerbilimleri Dergisi, vol. 21, no. 2, 2008, pp. 91–97.