References
- A.E. Abouelregal, M. Marin, and S. Askar. Thermo-optical mechanical waves in a rotating solid semiconductor sphere using the improved green–naghdi iii model. Mathematics, 9(22):2902, 2021.
- P. Ailawalia, M. Marin, and H. Nagar. Behavior of functionally graded semiconducting rod with internal heat source under a thermal shock. Journal of Computational Applied Mechanics, 55(1):51–61, 2024.
- D.P. Almond and P. Patel. Photothermal science and techniques, volume 10. Springer Science & Business Media, 1996.
- V. Chawla and D. Kamboj. A general study of fundamental solutions in aniotropicthermoelastic media with mass diffusion and voids. International Journal of Applied Mechanics and Engineering, 25(4), 2020.
- P.F. Hou, S. He, and C.P. Chen. 2d general solution and fundamental solution for orthotropic thermoelastic materials. Engineering Analysis with Boundary Elements, 35(1):56–60, 2011.
- P.F. Hou, A.Y. Leung, and C.P. Chen. Green’s functions for semi-infinite transversely isotropic thermoelastic materials. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 88(1):33–41, 2008.
- P.F. Hou, L. Wang, and T. Yi. Two dimension greens functions for semi-infinite orthotropic thermoelastic plane. Applied mathematical modelling, 33(3):1674–1682, 2009.
- M. Katouzian, S. Vlase, and M. Marin. Elastic moduli for a rectangular fibers array arrangement in a two phases composite. Journal of Computational Applied Mechanics, 55(3):538–551, 2024.
- R. Kumar, D. Batra, and S. Sharma. Thermoelastic medium with swelling porous structure and impedance boundary under dual-phase lag. Engineering Solid Mechanics, 13, 2024.
- R. Kumar and V. Chawla. A study of fundamental solution in orthotropic thermodiffusive elastic media. International Communications in Heat and Mass Transfer, 38(4):456–462, 2011.
- R. Kumar and V. Chawla. Green’s functions in orthotropic thermoelastic diffusion media. Engineering Analysis with Boundary Elements, 36(8):1272–1277, 2012.
- R. Kumar and T. Kansal. Propagation of lamb waves in transversely isotropic thermoelastic diffusive plate. International Journal of Solids and Structures, 45(22-23):5890–5913, 2008.
- R. Kumar and T. Kansal. Effect of relaxation times on circular crested waves in thermoelastic diffusive plate. Applied Mathematics and Mechanics, 31:493–500, 2010.
- R. Kumar, N. Sharma, and S. Chopra. Modelling of thermomechanical response in anisotropic photothermoelastic plate. Int. J. Mech. Eng, 6:577–594, 2022.
- S. Luminita, S. Vlase, and M. Marin. Symmetrical mechanical system properties-based forced vibration analysis. Journal of Computational Applied Mechanics, 54(4):501–514, 2023.
- A. Mandelis. Photothermal/photoacoustic spectroscopic measurements of optical absorption coefficients in semiconductors. In Handbook of Optical Constants of Solids, pages 59–97. Elsevier, 1997.
- M. Marin, I. Abbas, and R. Kumar. Relaxed saint-venant principle for thermoelastic micropolar diffusion. Struct. Eng. Mech, 51(4):651–662, 2014.
- M. Marin, R.P. Agarwal, and S.R. Mahmoud. Modeling a microstretch thermoelastic body with two temperatures. In Abstract and Applied Analysis, volume 2013, page 583464. Wiley Online Library, 2013.
- M. Marin, A. Hobiny, and I. Abbas. The effects of fractional time derivatives in porothermoelastic materials using finite element method. Mathematics, 9(14):1606, 2021.
- M. Marin, A. Ochsner, and M.M. Bhatti. Some results in moore-gibson-thompson thermoelasticity of dipolar bodies. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 100(12):e202000090, 2020.
- F.A. McDonald and Grover C. Wetsel J. Generalized theory of the photoacoustic effect. Journal of Applied Physics, 49(4):2313–2322, 1978.
- P.M. Nikolic and D.M. Todorovic. Photoacoustic and electroacoustic properties of semiconductors. Progress in quantum electronics, 13(2):107–189, 1989.
- W. Nowacki. Dynamical problems of thermodiffusion in solids ii. Bulletin of the Polish Academy of Sciences: Technical Sciences, 22:55–64, 1994.
- W. Nowacki. Dynamical problems of thermodiffusion in solids ii. Bulletin of the Polish Academy of Sciences: Technical Sciences, 22:205–211, 1994.
- R. Quintanilla. Moore–gibson–thompson thermoelasticity. Mathematics and Mechanics of Solids, 24(12):4020–4031, 2019.
- R. Quintanilla. Moore-gibson-thompson thermoelasticity with two temperatures. Applications in Engineering Science, 1:100006, 2020.
- K. Sharma and M. Marin. Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. Analele ştiinţifice ale Universităţii” Ovidius” Constanţa. Seria Matematică, 22(2):151–176, 2014.
- S. Sharma, S. Devi, R. Kumar, and M. Marin. Examining basic theorems and plane waves in the context of thermoelastic diffusion using a multi-phase-lag model with temperature dependence. Mechanics of Advanced Materials and Structures, pages 1–18, 2024.
- S. Sharma and S. Khator. Power generation planning with reserve dispatch and weather uncertainties including penetration of renewable sources. International Journal of Smart Grid and Clean Energy, 10(4):292–303, 2021.
- S. Sharma and S. Khator. Micro-grid planning with aggregators role in the renewable inclusive prosumer market. Journal of Power and Energy Engineering, 10(4):47–62, 2022.
- S. Sharma, K. Sharma, and R.R. Bhargava. Plane waves and fundamental solution in an electro-microstretch elastic solids. Afrika Matematika, 25:483–497, 2014.
- H.H. Sherief, F.A. Hamza, and H.A. Saleh. The theory of generalized thermoelastic diffusion. International journal of engineering science, 42(5-6):591–608, 2004.
- W.S. Slaughter. The linearized theory of elasticity. Springer Science & Business Media, 2002.
- R.G. Stearns and G.S. Kino. Effect of electronic strain on photoacoustic generation in silicon. Applied Physics Letters, 47(10):1048–1050, 1985.
- D.M. Todorović. Photothermal and electronic elastic effects in microelectromechanical structures. Review of scientific instruments, 74(1):578–581, 2003.
- D.M. Todorović. Plasma, thermal, and elastic waves in semiconductors. Review of scientific instruments, 74(1):582–585, 2003.
- D.M. Todorović. Plasmaelastic and thermoelastic waves in semiconductors. In Journal de Physique IV (Proceedings), volume 125, pages 551–555. EDP sciences, 2005.
- S. Vlase, M. Marin, A. Elkhalfi, and P. Ailawalia. Mathematical model for dynamic analysis of internal combustion engines. Journal of Computational Applied Mechanics, 54(4):607–622, 2023.
- S. Vlase, M. Marin, M.L. Scutaru, and R. Munteanu. Coupled transverse and torsional vibrations in a mechanical system with two identical beams. AIP Advances, 7(6), 2017.
- S. Vlase, C. Năstac, M. Marin, and M. Mihălcică. A method for the study of the vibration of mechanical bars systems with symmetries. Acta Technica Napocensis-Series: Applied Mathematics, Mechanics, and Engineering, 60(4), 2017.