Have a personal or library account? Click to login
An examination of the fundamental solution and Green’s function in orthotropic photothermoelastic with diffusion under the MGT model Cover

An examination of the fundamental solution and Green’s function in orthotropic photothermoelastic with diffusion under the MGT model

By: Saurav Sharma  
Open Access
|Nov 2025

References

  1. A.E. Abouelregal, M. Marin, and S. Askar. Thermo-optical mechanical waves in a rotating solid semiconductor sphere using the improved green–naghdi iii model. Mathematics, 9(22):2902, 2021.
  2. P. Ailawalia, M. Marin, and H. Nagar. Behavior of functionally graded semiconducting rod with internal heat source under a thermal shock. Journal of Computational Applied Mechanics, 55(1):51–61, 2024.
  3. D.P. Almond and P. Patel. Photothermal science and techniques, volume 10. Springer Science & Business Media, 1996.
  4. V. Chawla and D. Kamboj. A general study of fundamental solutions in aniotropicthermoelastic media with mass diffusion and voids. International Journal of Applied Mechanics and Engineering, 25(4), 2020.
  5. P.F. Hou, S. He, and C.P. Chen. 2d general solution and fundamental solution for orthotropic thermoelastic materials. Engineering Analysis with Boundary Elements, 35(1):56–60, 2011.
  6. P.F. Hou, A.Y. Leung, and C.P. Chen. Green’s functions for semi-infinite transversely isotropic thermoelastic materials. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 88(1):33–41, 2008.
  7. P.F. Hou, L. Wang, and T. Yi. Two dimension greens functions for semi-infinite orthotropic thermoelastic plane. Applied mathematical modelling, 33(3):1674–1682, 2009.
  8. M. Katouzian, S. Vlase, and M. Marin. Elastic moduli for a rectangular fibers array arrangement in a two phases composite. Journal of Computational Applied Mechanics, 55(3):538–551, 2024.
  9. R. Kumar, D. Batra, and S. Sharma. Thermoelastic medium with swelling porous structure and impedance boundary under dual-phase lag. Engineering Solid Mechanics, 13, 2024.
  10. R. Kumar and V. Chawla. A study of fundamental solution in orthotropic thermodiffusive elastic media. International Communications in Heat and Mass Transfer, 38(4):456–462, 2011.
  11. R. Kumar and V. Chawla. Green’s functions in orthotropic thermoelastic diffusion media. Engineering Analysis with Boundary Elements, 36(8):1272–1277, 2012.
  12. R. Kumar and T. Kansal. Propagation of lamb waves in transversely isotropic thermoelastic diffusive plate. International Journal of Solids and Structures, 45(22-23):5890–5913, 2008.
  13. R. Kumar and T. Kansal. Effect of relaxation times on circular crested waves in thermoelastic diffusive plate. Applied Mathematics and Mechanics, 31:493–500, 2010.
  14. R. Kumar, N. Sharma, and S. Chopra. Modelling of thermomechanical response in anisotropic photothermoelastic plate. Int. J. Mech. Eng, 6:577–594, 2022.
  15. S. Luminita, S. Vlase, and M. Marin. Symmetrical mechanical system properties-based forced vibration analysis. Journal of Computational Applied Mechanics, 54(4):501–514, 2023.
  16. A. Mandelis. Photothermal/photoacoustic spectroscopic measurements of optical absorption coefficients in semiconductors. In Handbook of Optical Constants of Solids, pages 59–97. Elsevier, 1997.
  17. M. Marin, I. Abbas, and R. Kumar. Relaxed saint-venant principle for thermoelastic micropolar diffusion. Struct. Eng. Mech, 51(4):651–662, 2014.
  18. M. Marin, R.P. Agarwal, and S.R. Mahmoud. Modeling a microstretch thermoelastic body with two temperatures. In Abstract and Applied Analysis, volume 2013, page 583464. Wiley Online Library, 2013.
  19. M. Marin, A. Hobiny, and I. Abbas. The effects of fractional time derivatives in porothermoelastic materials using finite element method. Mathematics, 9(14):1606, 2021.
  20. M. Marin, A. Ochsner, and M.M. Bhatti. Some results in moore-gibson-thompson thermoelasticity of dipolar bodies. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 100(12):e202000090, 2020.
  21. F.A. McDonald and Grover C. Wetsel J. Generalized theory of the photoacoustic effect. Journal of Applied Physics, 49(4):2313–2322, 1978.
  22. P.M. Nikolic and D.M. Todorovic. Photoacoustic and electroacoustic properties of semiconductors. Progress in quantum electronics, 13(2):107–189, 1989.
  23. W. Nowacki. Dynamical problems of thermodiffusion in solids ii. Bulletin of the Polish Academy of Sciences: Technical Sciences, 22:55–64, 1994.
  24. W. Nowacki. Dynamical problems of thermodiffusion in solids ii. Bulletin of the Polish Academy of Sciences: Technical Sciences, 22:205–211, 1994.
  25. R. Quintanilla. Moore–gibson–thompson thermoelasticity. Mathematics and Mechanics of Solids, 24(12):4020–4031, 2019.
  26. R. Quintanilla. Moore-gibson-thompson thermoelasticity with two temperatures. Applications in Engineering Science, 1:100006, 2020.
  27. K. Sharma and M. Marin. Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. Analele ştiinţifice ale Universităţii” Ovidius” Constanţa. Seria Matematică, 22(2):151–176, 2014.
  28. S. Sharma, S. Devi, R. Kumar, and M. Marin. Examining basic theorems and plane waves in the context of thermoelastic diffusion using a multi-phase-lag model with temperature dependence. Mechanics of Advanced Materials and Structures, pages 1–18, 2024.
  29. S. Sharma and S. Khator. Power generation planning with reserve dispatch and weather uncertainties including penetration of renewable sources. International Journal of Smart Grid and Clean Energy, 10(4):292–303, 2021.
  30. S. Sharma and S. Khator. Micro-grid planning with aggregators role in the renewable inclusive prosumer market. Journal of Power and Energy Engineering, 10(4):47–62, 2022.
  31. S. Sharma, K. Sharma, and R.R. Bhargava. Plane waves and fundamental solution in an electro-microstretch elastic solids. Afrika Matematika, 25:483–497, 2014.
  32. H.H. Sherief, F.A. Hamza, and H.A. Saleh. The theory of generalized thermoelastic diffusion. International journal of engineering science, 42(5-6):591–608, 2004.
  33. W.S. Slaughter. The linearized theory of elasticity. Springer Science & Business Media, 2002.
  34. R.G. Stearns and G.S. Kino. Effect of electronic strain on photoacoustic generation in silicon. Applied Physics Letters, 47(10):1048–1050, 1985.
  35. D.M. Todorović. Photothermal and electronic elastic effects in microelectromechanical structures. Review of scientific instruments, 74(1):578–581, 2003.
  36. D.M. Todorović. Plasma, thermal, and elastic waves in semiconductors. Review of scientific instruments, 74(1):582–585, 2003.
  37. D.M. Todorović. Plasmaelastic and thermoelastic waves in semiconductors. In Journal de Physique IV (Proceedings), volume 125, pages 551–555. EDP sciences, 2005.
  38. S. Vlase, M. Marin, A. Elkhalfi, and P. Ailawalia. Mathematical model for dynamic analysis of internal combustion engines. Journal of Computational Applied Mechanics, 54(4):607–622, 2023.
  39. S. Vlase, M. Marin, M.L. Scutaru, and R. Munteanu. Coupled transverse and torsional vibrations in a mechanical system with two identical beams. AIP Advances, 7(6), 2017.
  40. S. Vlase, C. Năstac, M. Marin, and M. Mihălcică. A method for the study of the vibration of mechanical bars systems with symmetries. Acta Technica Napocensis-Series: Applied Mathematics, Mechanics, and Engineering, 60(4), 2017.
DOI: https://doi.org/10.2478/auom-2025-0034 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 165 - 213
Submitted on: Nov 12, 2024
Accepted on: Feb 20, 2025
Published on: Nov 29, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Saurav Sharma, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.