Have a personal or library account? Click to login
The characterization of Nelson algebras by Sheffer stroke Cover

References

  1. J. C. Abbott, Implicational algebras, Bulletin mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie 11(59) (1967), 3-23.
  2. S. Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts Math 78 (1981).
  3. I. Chajda, Sheffer operation in ortholattices, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44(1) (2005), 19-23.
  4. I. Chajda, R. Halaš and H. Länger, Operations and structures derived from non-associative MV-algebras, Soft Computing 23 (2019), 3935-3944.
  5. I. Chajda and H. Länger, Sheffer operation in relational systems, Soft Computing 26 (2022), 89-97.
  6. W. B. Ewald, Intuitionistic tense and modal logic, Journal of Symbolic Logic 51(1) (1986), 166-179.
  7. A. V. Figallo and G. Pelaitay, An algebraic axiomatization of the Ewalds intuitionistic tense logic, Soft Computing 18 (2014), 1873-1883..
  8. A. V. Figallo, G. Pelaitay and J. Sarmiento, An algebraic study of tense operators on Nelson algebras, Studia Logica 19 (2021), 285-312.
  9. U. Rivieccio and M. Spinks, Quasi-Nelson; or, non-involutive Nelson algebras. In: D. Fazio, A. Ledda, F.Paoli (eds.), Algebraic Perspectives on Substructural Logics. Trends in Logic, Springer 55 (2020), 133-168.
  10. U. Rivieccio and R. Jansana, Quasi-Nelson algebras and fragments, Mathematical Structures in Computer Science 31(3) (2021), 257-285.
  11. C. Gomez, M. A. Marcos and H. J. San Martin, On the relation of negations in Nelson algebras, Reports on Mathematical Logic 56 (2022), 15-56.
  12. T. Katican, T. Oner, A. Rezaei and F. Smarandache, Neutrosophic N-structures applied to Sheffer stroke BL-algebras, Computer Modeling in Engineering and Sciences 129(1) (2021), 355-372.
  13. A. A. Markov, A constructive logic, Journal of Sysmbolic Logic 18(3) (1953), 257-257.
  14. W. McCune, R. Vero, B. Fitelson, K. Harris, A. Feist and L. Wos, Short single axioms for Boolean algebra, Journal of Automated Reasoning 29 (2002), 1-16.
  15. A. Molkhasi and K. P. Shum, Representations of strongly algebraically closed algebras, Algebra and Discrete Mathematics 28(1) (2019), 130-143.
  16. A. Molkhasi, Representations of Sheffer stroke algebras and Visser algebras, Soft Computing 25 (2021), 85338538.
  17. D. Nelson, Constructible falsity, Journal of Symbolic Logic 14(1) (1949), 16-26.
  18. T. Oner, T. Katican, A. Borumand Saeid and M. Terziler, Filters of strong Sheffer stroke non-associative MV-algebras, Analele Stiintifice ale Universitatii Ovidius Constanta 29(1) (2021), 143-164.
  19. T. Oner, T. Katican and A. Borumand Saeid, Fuzzy Filters of Sheffer stroke Hilbert algebras, Journal of Intelligent and Fuzzy Systems 40(1) (2021), 759-772.
  20. T. Oner, T. Katican and A. Borumand Saeid, Relation between Sheffer stroke and Hilbert algebras, Categories and General Algebraic Structures with Applications 14(1) (2021), 245-268.
  21. H. Rasiowa, N-lattices and constructive logic with strong negation, Fundamenta Mathematicae 46(1) (1958), 61-80.
  22. H. Rasiowa, An algebraic aproach to non-classic logics, Warzawa & Amsterdam: North-Holland Publishing Company, (1974).
  23. S. Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts Math, 78 (1981).
  24. H. M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants, Transactions of the American Mathematical Society 14(4) (1913), 481-488.
  25. R. Vero, A shortest 2-basis for Boolean algebra in terms of the Sheffer stroke, Journal of Automated Reasoning 31 (2003), 1-9.
DOI: https://doi.org/10.2478/auom-2025-0030 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 93 - 119
Submitted on: Apr 25, 2024
Accepted on: Oct 8, 2024
Published on: Nov 29, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Tahsin Oner, Tugce Katican, Arsham Borumand Saeid, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.