Have a personal or library account? Click to login
Square-difference factor absorbing submodules of modules over commutative rings Cover

Square-difference factor absorbing submodules of modules over commutative rings

Open Access
|Nov 2025

References

  1. M. M. Ali, Residual submodules of multiplication modules, Beitr. Algebra Geom. 46(2) (2005), 405–422.
  2. D. Anderson and E. Smith, Weakly prime ideals, Houston Journal of Mathematics 29 (4) (2003), 831-840.
  3. D. D. Anderson, M. Winders, Idealization of a module. Journal of Commutative Algebra, 1(1) (2009), 3-56.
  4. D. D. Anderson, C. Sangmin and J. R. Juett, Module-theoretic Generalization of Commutative Von-Neumann Regular Rings, Commun. Algebra, 47(11), 4713–4728, 2019.
  5. D. F. Anderson, A. Badawi, J. Coykendall, Square-difference factor absorbing ideals of a commutative rings, arXiv:2402.18704, https://doi.org/10.48550/arXiv.2402.18704.
  6. S. E Atani, F. Farzalipour, On weakly prime submodules. Tamkang Journal of Mathematics, 38(3) (2007), 247-252.
  7. A. Azizi, Principal ideal multiplication modules, Algebra Colloquium, 15(4) (2008), 637-648.
  8. M. Behboodi and H. Koohy. Weakly prime modules, Vietnam Journal of Mathematics, 32(2) (2004),185-195.
  9. M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar., 113(3) (2006), 239-250. (ISI)
  10. M. Behboodi. A generalization of Bear’s lower nilradical for modules, Journal of Algebra and its Applications, 6(2) (2007), 337-353.
  11. E. M. Bouba, N. Mahdou, and M. Tamekkante, Duplication of a module along an ideal, Acta Math. Hungar., 154(1) (2018), 29-42.
  12. M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443–459.
  13. R. El Khalfaoui, N. Mahdou, P. Sahandi, N. Shirmohammadi, Amalgamated modules along an ideal. Communications of the Korean Mathematical Society, 36(1) (2021), 1-10.
  14. C. Jayaram and U. Tekir, von Neumann regular modules. Commun. Algebra, 46(5) (2018), 2205–2217.
  15. H. A. Khashan, E. Yetkin Celikel, (m, n)-prime ideals of commutative rings. Preprints (2024), 2024010472. https://doi.org/10.20944/preprints202401.0472.v1.
  16. H. A. Khashan, E. Yetkin Celikel, On weakly (m, n)-prime ideals of commutative rings, Bulletin of the Korean Mathematical Society, 61(3) (2024), 717-734
  17. H. A. Khashan, E. Yetkin Celikel, A new generalization of (m, n)-closed ideals, Journal of Mathematical Sciences. (2023), https://doi.org/10.1007/s10958-023-06814-2.
  18. H. A. Khashan, E. Yetkin Celikel, Square-difference factor absorbing primary ideals of a commutative rings, Submitted.
  19. T. K. Lee, Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups., 236 (2004), 365–377.
  20. M. Nagata, Local Rings, New York, USA: Interscience,1962.
  21. A. Pekin, S. Koç and E. Aslankarayiğit Uğurlu, On (m, n)-semiprime submodules, Proceedings of the Estonian Academy of Sciences, 70(3) (2021) 260–267.
  22. B. Saraç, On semiprime submodules, Communications in Algebra. 37(7) (2009) 2485–2495. https://doi.org/10.1080/00927870802101994,2-s2.0-70449494863.
DOI: https://doi.org/10.2478/auom-2025-0028 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 41 - 65
Submitted on: Sep 17, 2024
Accepted on: Mar 19, 2025
Published on: Nov 29, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Hani A. Khashan, Ece Yetkin Celikel, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.