References
- M. M. Ali, Residual submodules of multiplication modules, Beitr. Algebra Geom. 46(2) (2005), 405–422.
- D. Anderson and E. Smith, Weakly prime ideals, Houston Journal of Mathematics 29 (4) (2003), 831-840.
- D. D. Anderson, M. Winders, Idealization of a module. Journal of Commutative Algebra, 1(1) (2009), 3-56.
- D. D. Anderson, C. Sangmin and J. R. Juett, Module-theoretic Generalization of Commutative Von-Neumann Regular Rings, Commun. Algebra, 47(11), 4713–4728, 2019.
- D. F. Anderson, A. Badawi, J. Coykendall, Square-difference factor absorbing ideals of a commutative rings, arXiv:2402.18704, https://doi.org/10.48550/arXiv.2402.18704.
- S. E Atani, F. Farzalipour, On weakly prime submodules. Tamkang Journal of Mathematics, 38(3) (2007), 247-252.
- A. Azizi, Principal ideal multiplication modules, Algebra Colloquium, 15(4) (2008), 637-648.
- M. Behboodi and H. Koohy. Weakly prime modules, Vietnam Journal of Mathematics, 32(2) (2004),185-195.
- M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math. Hungar., 113(3) (2006), 239-250. (ISI)
- M. Behboodi. A generalization of Bear’s lower nilradical for modules, Journal of Algebra and its Applications, 6(2) (2007), 337-353.
- E. M. Bouba, N. Mahdou, and M. Tamekkante, Duplication of a module along an ideal, Acta Math. Hungar., 154(1) (2018), 29-42.
- M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl., 6(3) (2007), 443–459.
- R. El Khalfaoui, N. Mahdou, P. Sahandi, N. Shirmohammadi, Amalgamated modules along an ideal. Communications of the Korean Mathematical Society, 36(1) (2021), 1-10.
- C. Jayaram and U. Tekir, von Neumann regular modules. Commun. Algebra, 46(5) (2018), 2205–2217.
- H. A. Khashan, E. Yetkin Celikel, (m, n)-prime ideals of commutative rings. Preprints (2024), 2024010472. https://doi.org/10.20944/preprints202401.0472.v1.
- H. A. Khashan, E. Yetkin Celikel, On weakly (m, n)-prime ideals of commutative rings, Bulletin of the Korean Mathematical Society, 61(3) (2024), 717-734
- H. A. Khashan, E. Yetkin Celikel, A new generalization of (m, n)-closed ideals, Journal of Mathematical Sciences. (2023), https://doi.org/10.1007/s10958-023-06814-2.
- H. A. Khashan, E. Yetkin Celikel, Square-difference factor absorbing primary ideals of a commutative rings, Submitted.
- T. K. Lee, Y. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups., 236 (2004), 365–377.
- M. Nagata, Local Rings, New York, USA: Interscience,1962.
- A. Pekin, S. Koç and E. Aslankarayiğit Uğurlu, On (m, n)-semiprime submodules, Proceedings of the Estonian Academy of Sciences, 70(3) (2021) 260–267.
- B. Saraç, On semiprime submodules, Communications in Algebra. 37(7) (2009) 2485–2495. https://doi.org/10.1080/00927870802101994,2-s2.0-70449494863.