References
- Anand BS, Changat M, Peterin I and Narasimha-Shenoi PG, Some Steiner concepts on lexicographic products of graphs, Discrete Math. Algorithms Appl. 6 (2014), 1450060, 14 pp.
- Arunandhi P, Cheng E and Melekian C, A note on the Steiner k-diameter of tensor product networks, Parall. Process. Lett. 29 (2019), Article ID 1950008.
- Chartrand G, Oellermann O R, Tian S and Zou H B, Steiner distance in graphs, Československá Akademie Věd.Časopis Pro Pěstování Matematiky 114 (1989), 399–410.
- Cho JD, Steiner tree problems in VLSI layout designs. In: Steiner trees in industry, Comb. Optim. 11, Kluwer Academic Publishers, Dordrecht, 2001, pp. 101–173.
- Daykin J W, Iliopoulos C S, Miller, M and Phanalasy O, Antimagicness of generalized corona and snowflake graphs, Math. Comput. Sci. 9 (2015), 105–111.
- Fiuj Laali AR, Haj Seyyed JH and Dariush K, Spectra of generalized corona of graphs, Linear Algebra Appl. 493 (2016), 411–425.
- Frucht R and Harary F, On the corona of two graphs Aequ. Math. 4 (1970), 322–325.
- Guillemin F and Robert P, Analysis of Steiner subtrees of random trees for traceroute algorithms, Random Structures Algorithms 35 (2009), 194–215.
- Gutman I and Estrada E, Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. 36 (1996), 541–543.
- Gutman I, Furtula B and Li X, Multicenter Wiener indices and their applications, J. Serb. Chem. Soc. 80 (2015), 1009–1017.
- Gutman I, Popovic L, Mishra B K, Kaunar M and Guevara N, Appliccation of line graphs in physical chemistry. Predicting surface tension of alkanes, J. Serb. Chem. Soc. 62 (1993), 1025–1029.
- Hakimi SL, Steiner’s problem in graphs and its implications, Networks 1 (1971), 113–133.
- Hou YP and Shiu W-C, The spectrum of the edge corona of two graphs, Electron. J. Linear Algebra 20 (2010), 586–594.
- Hwang FK, Richards DS and Winter P, The Steiner tree problem, North-Holland, Amsterdam, 1992.
- Iswar M, Gurusamy R, Rajesh Kannan M and Arockiaraj S, Spectra of eccentricity matrices of graphs, Discrete Appl. Math. 285 (2020), 252–260.
- John J, Comment on “Analogies between the geodetic number and the Steiner number of some classes of graphs”, FILOMAT 37 (2023), 585–589.
- Levi AY, Algorithm for shortest connection of a group of graph vertices, Dokl. Math. 12 (1971), 1477–1481.
- Li X, Mao Y and Gutman I, The Steiner Wiener index of a graph, Discuss. Math. Graph Theory 36 (2016), 455–465.
- Luo Y and Yan W, Spectra of the generalized edge corona of graphs, Discrete Math. Algorithms Appl. 10 (2018), 1850002, 10 pp.
- Mao Y and Furtula B, Steiner Distance in Graphs–A Survey, MATCH Commun. Math. Comput. Chem. 86 (2021), 211–287.
- Mao Y, Wang Z and Gutman I, Steiner Wiener index of graph products, Trans. Comb. 5 (2016), 39–50.
- Thomas DA and Weng JF, Computing Steiner points for gradient-constrained minimum networks, Discrete Optim. 7(2010), 21–31.
- Wang Z, Mao Y, Cheng E and Melekian C, Steiner distance in join, corona, cluster and threshold graphs, J. Inf. Sci. Eng. 35 (2019), 721–735.
- Yero IG and Rodríguez-Velázquez JA, Analogies between the geodetic number and the Steiner number of some classes of graphs, FILOMAT 29 (2015), 1781–1788.