Have a personal or library account? Click to login
Steiner distances in generalized corona products Cover

References

  1. Anand BS, Changat M, Peterin I and Narasimha-Shenoi PG, Some Steiner concepts on lexicographic products of graphs, Discrete Math. Algorithms Appl. 6 (2014), 1450060, 14 pp.
  2. Arunandhi P, Cheng E and Melekian C, A note on the Steiner k-diameter of tensor product networks, Parall. Process. Lett. 29 (2019), Article ID 1950008.
  3. Chartrand G, Oellermann O R, Tian S and Zou H B, Steiner distance in graphs, Československá Akademie Věd.Časopis Pro Pěstování Matematiky 114 (1989), 399–410.
  4. Cho JD, Steiner tree problems in VLSI layout designs. In: Steiner trees in industry, Comb. Optim. 11, Kluwer Academic Publishers, Dordrecht, 2001, pp. 101–173.
  5. Daykin J W, Iliopoulos C S, Miller, M and Phanalasy O, Antimagicness of generalized corona and snowflake graphs, Math. Comput. Sci. 9 (2015), 105–111.
  6. Fiuj Laali AR, Haj Seyyed JH and Dariush K, Spectra of generalized corona of graphs, Linear Algebra Appl. 493 (2016), 411–425.
  7. Frucht R and Harary F, On the corona of two graphs Aequ. Math. 4 (1970), 322–325.
  8. Guillemin F and Robert P, Analysis of Steiner subtrees of random trees for traceroute algorithms, Random Structures Algorithms 35 (2009), 194–215.
  9. Gutman I and Estrada E, Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. 36 (1996), 541–543.
  10. Gutman I, Furtula B and Li X, Multicenter Wiener indices and their applications, J. Serb. Chem. Soc. 80 (2015), 1009–1017.
  11. Gutman I, Popovic L, Mishra B K, Kaunar M and Guevara N, Appliccation of line graphs in physical chemistry. Predicting surface tension of alkanes, J. Serb. Chem. Soc. 62 (1993), 1025–1029.
  12. Hakimi SL, Steiner’s problem in graphs and its implications, Networks 1 (1971), 113–133.
  13. Hou YP and Shiu W-C, The spectrum of the edge corona of two graphs, Electron. J. Linear Algebra 20 (2010), 586–594.
  14. Hwang FK, Richards DS and Winter P, The Steiner tree problem, North-Holland, Amsterdam, 1992.
  15. Iswar M, Gurusamy R, Rajesh Kannan M and Arockiaraj S, Spectra of eccentricity matrices of graphs, Discrete Appl. Math. 285 (2020), 252–260.
  16. John J, Comment on “Analogies between the geodetic number and the Steiner number of some classes of graphs”, FILOMAT 37 (2023), 585–589.
  17. Levi AY, Algorithm for shortest connection of a group of graph vertices, Dokl. Math. 12 (1971), 1477–1481.
  18. Li X, Mao Y and Gutman I, The Steiner Wiener index of a graph, Discuss. Math. Graph Theory 36 (2016), 455–465.
  19. Luo Y and Yan W, Spectra of the generalized edge corona of graphs, Discrete Math. Algorithms Appl. 10 (2018), 1850002, 10 pp.
  20. Mao Y and Furtula B, Steiner Distance in Graphs–A Survey, MATCH Commun. Math. Comput. Chem. 86 (2021), 211–287.
  21. Mao Y, Wang Z and Gutman I, Steiner Wiener index of graph products, Trans. Comb. 5 (2016), 39–50.
  22. Thomas DA and Weng JF, Computing Steiner points for gradient-constrained minimum networks, Discrete Optim. 7(2010), 21–31.
  23. Wang Z, Mao Y, Cheng E and Melekian C, Steiner distance in join, corona, cluster and threshold graphs, J. Inf. Sci. Eng. 35 (2019), 721–735.
  24. Yero IG and Rodríguez-Velázquez JA, Analogies between the geodetic number and the Steiner number of some classes of graphs, FILOMAT 29 (2015), 1781–1788.
DOI: https://doi.org/10.2478/auom-2025-0027 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 21 - 39
Submitted on: Dec 19, 2024
Accepted on: Mar 25, 2025
Published on: Nov 29, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 R. Gurusamy, P. Vignesh, R. Rathajeyalakshmi, Raúl M. Falcón, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.