Have a personal or library account? Click to login
On some differential inclusions with anti-periodic solutions Cover
Open Access
|Jun 2025

References

  1. S. Aizicovici, M. McKibben, S. Reich, Anti-periodic solutions to non-monotone evolution equations with discontinuous nonlinearities, Nonlinear Anal. 43 (2001) 233251.
  2. S. Aizicovici, N. H. Pavel, Anti-Periodic Solutions to a Class of Nonlinear Differential Equations in Hilbert Space, J. Funct. Anal. 99 (2) (1991) 387-408.
  3. J. Appell, E. De Pascale, A. Vignoli, Nonlinear Spectral Theory, Walter de Gruyter, Berlin, 2004.
  4. L. Barbu, G. Moroanu, Singularly Perturbed Boundary Value Problems, Birkhäuser, Basel-Boston-Berlin, 2007.
  5. L. Barbu, G. Moroşanu, I. V. Vîntu, Two-parameter second-order differential inclusions with antiperiodic conditions, submitted.
  6. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordho, Leyden, 1976.
  7. V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monogr. Math., Springer, New York, 2010.
  8. H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, in: Universitext, Springer, 2010.
  9. H. Brézis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies 5, North Holland, Amsterdam, 1973.
  10. Y.Q. Chen, Anti-periodic solutions for semilinear evolution equations, J. Math. Anal. Appl. 315 (2006) 337348.
  11. Y.Q. Chen, J.J. Nieto, D. ORegan, Anti-periodic solutions for evolution equations associated with maximal monotone mappings, Appl. Math. Lett. 24(3) (2011) 302307.
  12. K.L. Cooke, D.W. Krumme, Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations, J. Math. Anal. Appl. 24 (1968) 372-387.
  13. B. Djafari Rouhani, H. Khatibzadeh, Nonlinear Evolution and Difference Equations of Monotone Type in Hilbert Spaces, CRC Press, Boca Raton, 2019.
  14. A. Haraux, Anti-periodic solutions of some nonlinear evolution equations, Manuscripta Math. 63 (1989), 479-505.
  15. V.-M. Hokkanen, G. Moroşanu, Functional Methods in Differential Equations, Chapman & Hall/CRC, Boca Raton-London-New York-Washington, D.C., 2002.
  16. J.L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôl optimal, Lecture Notes in Math., Vol. 323, Springer, Berlin, 1973.
  17. G. Moroşanu, Nonlinear Evolution Equations and Applications, D. Reidel, Dordrecht-Boston-Lancaster-Tokyo, 1988.
  18. S. Nicaise, Control and stabilization of 2×2 hyperbolic systems on graphs, Math. Control Relat. Fields 7(1) (2017) 5372.
  19. M. Nakao, Existence of anti-periodic solution for the quasilinear wave equation with viscosity, J. Math. Anal. Appl. 204 (1996) 754764.
  20. M. Nakao, H. Okochi, Anti-periodic Solution for utt − (σ(ux))x uxxt = f(x, t), J. Math. Anal. Appl. 197(3) (1996) 796-809.
  21. H. Okochi, On the existence of periodic solutions to nonlinear abstract parabolic equations, J. Math. Sot. Japan. 40 (1988) 541-553.
  22. H. Okochi, On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators, J. Funct. Anal. 91 (1990) 246258.
  23. Ph. Souplet, Uniqueness and nonuniqueness results for the anti-periodic solution of some second-order nonlinear evolution equations, Nonlinear Anal. 26(9) (1996) 1511-1525.
DOI: https://doi.org/10.2478/auom-2025-0024 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 157 - 178
Submitted on: Jul 13, 2024
Accepted on: Nov 11, 2024
Published on: Jun 3, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Ioan Vladimir Vîntu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.