Have a personal or library account? Click to login
Evaluating 



AT,S(2)
A_{T,S}^{\left( 2 \right)}


 Matrix Inverses from full-rank Singular Value Decomposition Cover

Evaluating AT,S(2) A_{T,S}^{\left( 2 \right)} Matrix Inverses from full-rank Singular Value Decomposition

Open Access
|Jun 2025

References

  1. A. G. Akritas, G. I. Malaschonok, Computations in Modules over Commutative Domains, Lecture Notes in Computer Science, 4770, (2007), 11–23.
  2. A. Ben-Israel, T.N.E. Greville, Generalized inverses: Theory and Applications, Second Ed., Springer, 2003.
  3. Y. Chen, The generalized Bott–Duffin inverse and its application, Linear Algebra Appl. 134 (1990), 71–91.
  4. P. Courrieu, Fast solving of weighted pairing least-squares systems, Journal of Computational and Applied Mathematics 231 (2009), 39–48.
  5. P. Courrieu, Fast Computation of Moore-Penrose Inverse Matrices, Neural Information Processing - Letters and Reviews 8 (2005), 25–29.
  6. J. Foster, J. McWhirter, M. Davies, J. Chambers, An algorithm for calculating the QR and singular value decompositions of polynomial matrices. IEEE Transactions on Signal Processing, 58(3), (2009) 1263–1274.
  7. J. Foster, Algorithms and techniques for polynomial matrix decompositions, Ph.D. dissertation, School Eng., Cardiff Univ., Cardiff, U.K., 2008.
  8. J. Jones, N.P. Karampetakis and A.C. Pugh, The computation and application of the generalized inverse via Maple, J. Symbolic Comput. 25 (1998), 99–124.
  9. A.N. Malyshev, ”Matrix equations: Factorization of matrix polynomials” M. Hazewinkel (ed.), Handbook of Algebra I, Elsevier (1995), 79–116.
  10. [10] X. Sheng, G. Chen, Full-rank representation of generalized inverse AT,S(2) A_{T,S}^{\left( 2 \right)} and its applications, Comput. Math. Appl. 54 (2007), 1422–1430.
  11. I.P. Stanimirović, M.B. Tasić, Computation of generalized inverses by using the LDL* decomposition, Appl. Math. Lett., 25 (2012), 526–531.
  12. P.S. Stanimirović and M.B. Tasić, Partitioning method for rational and polynomial matrices, Appl. Math. Comput. 155 (2004), 137–163.
  13. M. Tasić, I. Stanimirović, Symbolic computation of Moore-Penrose inverse using the LDL* decomposition of the polynomial matrix, Filomat 27:8 (2013), 1393–1403.
  14. M.B. Tasić, P.S. Stanimirović, M.D. Petković, Symbolic computation of weighted Moore-Penrose inverse using partitioning method, Appl. Math. Comput. 189 (2007), 615–640.
  15. M.B. Tasić, P.S. Stanimirović, Symbolic and recursive computation of different types of generalized inverses, Appl. Math. Comput. 199 (2008), 349–367.
  16. M.B. Tasić, P.S. Stanimirović, Differentiation of generalized inverses for rational and polynomial matrices, Appl. Math. Comput. 216 (2010), 2092–2106.
  17. G. Wang, Y. Wei, S. Qiao, Generalized Inverses: Theory and Computations, Science Press, Beijing/New York, 2004.
  18. Y. Wei, C. Deng, A note on additive results for the Drazin inverse, Linear and Multilinear Algebra 59:12 (2011), 1319–1329.
  19. S. Wolfram, The mathematica Book, 5th ed., Wolfram Media/Cambridge University Press, Champaign, IL 61820, USA, 2003.
  20. G. Zielke, Report on test matrices for generalized inverses, Computing 36 (1986), 105–162.
DOI: https://doi.org/10.2478/auom-2025-0023 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 143 - 156
Submitted on: Jul 4, 2024
Accepted on: Nov 25, 2024
Published on: Jun 3, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Ivan Stanimirović, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.