Have a personal or library account? Click to login
An alternate measure of the cumulative residual Sharma-Taneja-Mittal entropy Cover

References

  1. S. Abe, A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics, Physics Letters A 224 (1997), 326–330.
  2. S. Abe, N. Suzuki, Itineration of the Internet over nonequilibrium stationary states in Tsallis statistics, Physical Review E 67 (2003), 016106.
  3. S. Abe, N. Suzuki, Law for the distance between successive earthquakes, J. Geophys. Res. 108 (2003), 2113.
  4. V.S. Barbu, A. Karagrigoriou, V. Preda, Entropy, divergence rates and weighted divergence rates for Markov chains. I: The alpha-gamma and beta- gamma case, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 18 (2017), 293–301.
  5. V.S. Barbu, A. Karagrigoriou, V. Preda, Entropy and divergence rates for Markov chains. II: The weighted case, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 19 (2018), 3–10.
  6. V.S. Barbu, A. Karagrigoriou, V. Preda, Entropy and divergence rates for Markov chains. III: The Cressie and Read case and applications, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 19 (2018), 413–421.
  7. C. Beck, E.G.D. Cohen, Superstatistics, Physica A 322 (2003), 267–275.
  8. V. Crupi, J.D. Nelson, B. Meder, G. Cevolani, K. Tentori, Generalized information theory meets human cognition: Introducing a unified framework to model uncertainty and information search, Cognitive Science, 42 (2018), 1410–1456.
  9. A.H. Darooneh, C. Dadashinia, Analysis of the spatial and temporal distributions between successive earthquakes: Nonextensive statistical mechanics viewpoint, 387 (2008), 3647–3654.
  10. T.D. Frank, A. Daffertshofer, Exact time-dependent solutions of the Rényi Fokker-Planck equation and the Fokker-Planck equations related to the entropies proposed by Sharma and Mittal, Physica A, 285 (2000), 351–366.
  11. S. Ghaffari, A.H. Ziaie, H. Moradpour, F. Asghariyan, F. Feleppa, M. Tavayef, Black hole thermodynamics in Sharma-Mittal generalized entropy formalism, General Relativity and Gravitation, 51 (2019), 93.
  12. T. Hasumi, Hypocenter interval statistics between successive earthquakes in the twodimensional Burridge-Knopo model, Physica A 388 (2009), 477–482.
  13. E. Haven, The Blackwell and Dubins theorem and Rényi’s amount of information measure: Some applications, Acta Appl. Math. 109 (2010), 743–757.
  14. I.-E. Hirică, C.-L. Pripoae, G.-T. Pripoae, V. Preda, Lie symmetries of the nonlinear Fokker-Planck equation based on weighted Kaniadakis entropy, Mathematics 10 (2022), 2776.
  15. G.T. Howard, A generalization of the Glivenko-Cantelli theorem, Ann. Math. Stat. 30 (1959), 828–830.
  16. I. Iatan, M. Dragan, S. Dedu, V. Preda, Using probabilistic models for data compression, Mathematics 10 (2022), 3847.
  17. Z.Q. Jiang, W. Chen, W.X. Zhou, Scaling in the distribution of intertrade durations of Chinese stocks, Physica A 387 (2008), 5818–5825.
  18. T. Kaizoji, An interacting-agent model of financial markets from the viewpoint of nonextensive statistical mechanics, Physica A 370 (2006), 109–113.
  19. G. Kaniadakis, Non-linear kinetics underlying generalized statistics, Physica A 296 (2001), 405–425.
  20. G. Kaniadakis, M. Lissia, A.M. Scarfone, Deformed logarithms and entropies Physica A 340 (2004), 41–49.
  21. S. Koltcov, V. Ignatenko, O. Koltsova, Estimating topic modeling performance with Sharma-Mittal entropy, Entropy 21 (2019), 660.
  22. Y. Li, Q. Ding, Fusion entropy and its spatial post-multiscale version: Methodology and application, Chaos, Solitons & Fractals 186 (2024), 115345.
  23. J. Lima, R.Jr. Silva, J. Santos, Plasma oscillations and nonextensive statistics, Phys. Rev. E 61 (2000), 3260.
  24. D.P. Mittal, On some functional equations concerning entropy, directed divergence and inaccuracy, Metrika 22 (1975), 35–46.
  25. M.S. Mohamed, H.M. Barakat, S.A. Alyami, M.A. Abd Elgawad, Fractional entropy-based test of uniformity with power comparisons, J. Math. 2021 (2021), 5331260.
  26. M.S. Mohamed, H.M. Barakat, S.A. Alyami, M.A. Abd Elgawad, Cumulative residual Tsallis entropy-based test of uniformity and some new findings, Mathematics 10 (2022), 771.
  27. H.A. Noughabi, Cumulative residual entropy applied to testing uniformity, Commun. Stat. Theory Methods 50 (2020), 1811339.
  28. N. Oikonomou, A. Provata, U. Tirnakli, Nonextensive statistical approach to non-coding human DNA, Physica A 387 (2008), 2653–2659.
  29. J. Paul, P.Y. Thomas, Sharma-Mittal entropy properties on record values, Statistica, 76 (2016), 273–287.
  30. V. Preda, S. Dedu, I. Iatan, I. Dănilă Cernat, M. Sheraz, Tsallis entropy for loss models and survival models involving truncated and censored random variables, Entropy 24 (2022), 1654.
  31. V. Preda, S. Dedu, M. Sheraz, New measure selection for Hunt-Devolder semi-Markov regime switching interest rate models, Physica A 407 (2014), 350–359.
  32. C.-L. Pripoae, I.-E. Hirică, G.-T. Pripoae, V. Preda, Lie symmetries of the nonlinear Fokker-Planck equation based on weighted Tsallis entropy, Carpathian J. Math. 38 (2022), 597–617.
  33. G. Rajesh, S.M. Sunoj, Some properties of cumulative Tsallis entropy of order α, Stat. Pap. 60 (2019), 933–943.
  34. M. Rao, Y. Chen, B.C. Vemuri, F. Wang, Cumulative residual entropy: A new measure of information, IEEE Trans. Inf. Theory 50 (2004), 1220–1228.
  35. A.E. Rastegin, Bounds of the Pinsker and Fannes types on the Tsallis relative entropy, Math. Phys. Anal. Geom. 16 (2013), 213–228.
  36. I. Raşa, Convexity properties of some entropies, Result. Math. 73 (2018), 105.
  37. I. Raşa, Convexity properties of some entropies. II, Result. Math. 74 (2019), 154.
  38. J. Sadeghi, M. Rostami, M.R. Alipour, Investigation of phase transition of BTZ black hole with Sharma-Mittal entropy approaches, International Journal of Modern Physics A, 34 (2019), 1950182.
  39. M.M. Sati, N. Gupta, Some characterization results on dynamic cumulative residual Tsallis entropy, J. Probab. Stat. 2015 (2015), 694203.
  40. A. Sayahian Jahromi, S.A. Moosavi, H. Moradpour, J.P. Morais Graça, I.P. Lobo, I.G. Salako, A. Jawad, Generalized entropy formalism and a new holographic dark energy model, Physics Letters B, 780 (2018), 21–24.
  41. A.M. Scarfone, T. Wada, Thermodynamic equilibrium and its stability for microcanonical systems described by the Sharma-Taneja-Mittal entropy, Phys. Rev. E 72 (2005), 026123.
  42. R.-C. Sfetcu, S.-C. Sfetcu, V. Preda, Ordering Awad-Varma entropy and applications to some stochastic models, Mathematics 9 (2021), 280.
  43. R.-C. Sfetcu, S.-C. Sfetcu, V. Preda, On Tsallis and Kaniadakis divergences, Math. Phys. Anal. Geom. 25 (2022), 7.
  44. R.-C. Sfetcu, S.-C. Sfetcu, V. Preda, Some properties of weighted Tsallis and Kaniadakis divergences, Entropy 24 (2022), 1616.
  45. R.-C. Sfetcu, S.-C. Sfetcu, V. Preda, Some generalizations concerning inaccuracy measures, Result. Math. 78 (2023), 195.
  46. S.-C. Sfetcu, Varma quantile entropy order, Analele Ştiinţifice Univ. Ovidius Constanţa 29 (2021), 249–264.
  47. C. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), 379–423.
  48. B.D. Sharma, I.J. Taneja, Entropy of type (α, β) and other generalized measures in information theory, Metrika 22 (1975), 205–216.
  49. T. Simon, G. Dulac, On cumulative Tsallis entropies, Acta Appl. Math. 188 (2023), 9.
  50. A.D. Soares, N.J.Jr. Moura, M.B. Ribeiro, Tsallis statistics in the income distribution of Brazil, Chaos, Solitons & Fractals 88 (2016), 158–171.
  51. F. Suter, I. Cernat, M. Dragan, Some information measures properties of the GOS-concomitants from the FGM family, Entropy 24 (2022), 1361.
  52. A. Toma, Model selection criteria using divergences, Entropy 16 (2014), 2686–2698.
  53. A. Toma, A. Karagrigoriou, P. Trentou, Robust model selection criteria based on pseudodistances, Entropy 22 (2020), 304.
  54. G. Toscani, Rényi entropies and nonlinear diffusion equations, Acta Appl. Math. 132 (2014), 595–604.
  55. B. Trivellato, The minimal k-entropy martingale measure, Int. J. Theor. Appl. Financ. 15 (2012), 1250038.
  56. B. Trivellato, Deformed exponentials and applications to finance, Entropy 15 (2013), 3471–3489.
  57. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988), 479–487.
  58. G.A. Tsekouras, C. Tsallis, Generalized entropy arising from a distribution of q indices, Phys. Rev. E 71 (2005), 046144.
  59. X. Wang, Y. Li, Q. Qiao, A. Tavares, Y. Liang, Water quality prediction based on machine learning and comprehensive weighting methods, Entropy 25 (2023), 1186.
  60. F. Wang, B.C. Vemuri, Non-rigid multi-model image registration using cross-cumulative residual entropy, Int. J. Comp. Vision 74 (2007), 201–215.
  61. M. Xu, P. Shang, S. Zhang, Multiscale Rényi cumulative residual distribution entropy: reliability analysis of financial time series, Chaos, Solitons & Fractals 143 (2021), 110410.
  62. H. Yoshioka, Y. Yoshioka, Generalized divergences for statistical evaluation of uncertainty in long-memory processes, Chaos, Solitons & Fractals 182 (2024), 114627.
  63. M. Younas, A. Jawad, S. Qummer, H. Moradpour, S. Rani, Cosmological implications of the generalized entropy based holographic dark energy models in dynamical Chern-Simons modified gravity, Advances in High Energy Physics, 2019 (2019), 1287932.
  64. T. Zhan, J. Zhou, Z. Li, Y. Deng, Generalized information entropy and generalized information dimension, Chaos, Solitons & Fractals 184 (2024), 114976.
DOI: https://doi.org/10.2478/auom-2025-0022 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 125 - 142
Submitted on: Jun 11, 2024
Accepted on: Oct 7, 2024
Published on: Jun 3, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Răzvan-Cornel Sfetcu, Elena-Graţiela Robe-Voinea, Florentin Şerban, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.