References
- S. Abe, A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics, Physics Letters A 224 (1997), 326–330.
- S. Abe, N. Suzuki, Itineration of the Internet over nonequilibrium stationary states in Tsallis statistics, Physical Review E 67 (2003), 016106.
- S. Abe, N. Suzuki, Law for the distance between successive earthquakes, J. Geophys. Res. 108 (2003), 2113.
- V.S. Barbu, A. Karagrigoriou, V. Preda, Entropy, divergence rates and weighted divergence rates for Markov chains. I: The alpha-gamma and beta- gamma case, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 18 (2017), 293–301.
- V.S. Barbu, A. Karagrigoriou, V. Preda, Entropy and divergence rates for Markov chains. II: The weighted case, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 19 (2018), 3–10.
- V.S. Barbu, A. Karagrigoriou, V. Preda, Entropy and divergence rates for Markov chains. III: The Cressie and Read case and applications, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 19 (2018), 413–421.
- C. Beck, E.G.D. Cohen, Superstatistics, Physica A 322 (2003), 267–275.
- V. Crupi, J.D. Nelson, B. Meder, G. Cevolani, K. Tentori, Generalized information theory meets human cognition: Introducing a unified framework to model uncertainty and information search, Cognitive Science, 42 (2018), 1410–1456.
- A.H. Darooneh, C. Dadashinia, Analysis of the spatial and temporal distributions between successive earthquakes: Nonextensive statistical mechanics viewpoint, 387 (2008), 3647–3654.
- T.D. Frank, A. Daffertshofer, Exact time-dependent solutions of the Rényi Fokker-Planck equation and the Fokker-Planck equations related to the entropies proposed by Sharma and Mittal, Physica A, 285 (2000), 351–366.
- S. Ghaffari, A.H. Ziaie, H. Moradpour, F. Asghariyan, F. Feleppa, M. Tavayef, Black hole thermodynamics in Sharma-Mittal generalized entropy formalism, General Relativity and Gravitation, 51 (2019), 93.
- T. Hasumi, Hypocenter interval statistics between successive earthquakes in the twodimensional Burridge-Knopo model, Physica A 388 (2009), 477–482.
- E. Haven, The Blackwell and Dubins theorem and Rényi’s amount of information measure: Some applications, Acta Appl. Math. 109 (2010), 743–757.
- I.-E. Hirică, C.-L. Pripoae, G.-T. Pripoae, V. Preda, Lie symmetries of the nonlinear Fokker-Planck equation based on weighted Kaniadakis entropy, Mathematics 10 (2022), 2776.
- G.T. Howard, A generalization of the Glivenko-Cantelli theorem, Ann. Math. Stat. 30 (1959), 828–830.
- I. Iatan, M. Dragan, S. Dedu, V. Preda, Using probabilistic models for data compression, Mathematics 10 (2022), 3847.
- Z.Q. Jiang, W. Chen, W.X. Zhou, Scaling in the distribution of intertrade durations of Chinese stocks, Physica A 387 (2008), 5818–5825.
- T. Kaizoji, An interacting-agent model of financial markets from the viewpoint of nonextensive statistical mechanics, Physica A 370 (2006), 109–113.
- G. Kaniadakis, Non-linear kinetics underlying generalized statistics, Physica A 296 (2001), 405–425.
- G. Kaniadakis, M. Lissia, A.M. Scarfone, Deformed logarithms and entropies Physica A 340 (2004), 41–49.
- S. Koltcov, V. Ignatenko, O. Koltsova, Estimating topic modeling performance with Sharma-Mittal entropy, Entropy 21 (2019), 660.
- Y. Li, Q. Ding, Fusion entropy and its spatial post-multiscale version: Methodology and application, Chaos, Solitons & Fractals 186 (2024), 115345.
- J. Lima, R.Jr. Silva, J. Santos, Plasma oscillations and nonextensive statistics, Phys. Rev. E 61 (2000), 3260.
- D.P. Mittal, On some functional equations concerning entropy, directed divergence and inaccuracy, Metrika 22 (1975), 35–46.
- M.S. Mohamed, H.M. Barakat, S.A. Alyami, M.A. Abd Elgawad, Fractional entropy-based test of uniformity with power comparisons, J. Math. 2021 (2021), 5331260.
- M.S. Mohamed, H.M. Barakat, S.A. Alyami, M.A. Abd Elgawad, Cumulative residual Tsallis entropy-based test of uniformity and some new findings, Mathematics 10 (2022), 771.
- H.A. Noughabi, Cumulative residual entropy applied to testing uniformity, Commun. Stat. Theory Methods 50 (2020), 1811339.
- N. Oikonomou, A. Provata, U. Tirnakli, Nonextensive statistical approach to non-coding human DNA, Physica A 387 (2008), 2653–2659.
- J. Paul, P.Y. Thomas, Sharma-Mittal entropy properties on record values, Statistica, 76 (2016), 273–287.
- V. Preda, S. Dedu, I. Iatan, I. Dănilă Cernat, M. Sheraz, Tsallis entropy for loss models and survival models involving truncated and censored random variables, Entropy 24 (2022), 1654.
- V. Preda, S. Dedu, M. Sheraz, New measure selection for Hunt-Devolder semi-Markov regime switching interest rate models, Physica A 407 (2014), 350–359.
- C.-L. Pripoae, I.-E. Hirică, G.-T. Pripoae, V. Preda, Lie symmetries of the nonlinear Fokker-Planck equation based on weighted Tsallis entropy, Carpathian J. Math. 38 (2022), 597–617.
- G. Rajesh, S.M. Sunoj, Some properties of cumulative Tsallis entropy of order α, Stat. Pap. 60 (2019), 933–943.
- M. Rao, Y. Chen, B.C. Vemuri, F. Wang, Cumulative residual entropy: A new measure of information, IEEE Trans. Inf. Theory 50 (2004), 1220–1228.
- A.E. Rastegin, Bounds of the Pinsker and Fannes types on the Tsallis relative entropy, Math. Phys. Anal. Geom. 16 (2013), 213–228.
- I. Raşa, Convexity properties of some entropies, Result. Math. 73 (2018), 105.
- I. Raşa, Convexity properties of some entropies. II, Result. Math. 74 (2019), 154.
- J. Sadeghi, M. Rostami, M.R. Alipour, Investigation of phase transition of BTZ black hole with Sharma-Mittal entropy approaches, International Journal of Modern Physics A, 34 (2019), 1950182.
- M.M. Sati, N. Gupta, Some characterization results on dynamic cumulative residual Tsallis entropy, J. Probab. Stat. 2015 (2015), 694203.
- A. Sayahian Jahromi, S.A. Moosavi, H. Moradpour, J.P. Morais Graça, I.P. Lobo, I.G. Salako, A. Jawad, Generalized entropy formalism and a new holographic dark energy model, Physics Letters B, 780 (2018), 21–24.
- A.M. Scarfone, T. Wada, Thermodynamic equilibrium and its stability for microcanonical systems described by the Sharma-Taneja-Mittal entropy, Phys. Rev. E 72 (2005), 026123.
- R.-C. Sfetcu, S.-C. Sfetcu, V. Preda, Ordering Awad-Varma entropy and applications to some stochastic models, Mathematics 9 (2021), 280.
- R.-C. Sfetcu, S.-C. Sfetcu, V. Preda, On Tsallis and Kaniadakis divergences, Math. Phys. Anal. Geom. 25 (2022), 7.
- R.-C. Sfetcu, S.-C. Sfetcu, V. Preda, Some properties of weighted Tsallis and Kaniadakis divergences, Entropy 24 (2022), 1616.
- R.-C. Sfetcu, S.-C. Sfetcu, V. Preda, Some generalizations concerning inaccuracy measures, Result. Math. 78 (2023), 195.
- S.-C. Sfetcu, Varma quantile entropy order, Analele Ştiinţifice Univ. Ovidius Constanţa 29 (2021), 249–264.
- C. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948), 379–423.
- B.D. Sharma, I.J. Taneja, Entropy of type (α, β) and other generalized measures in information theory, Metrika 22 (1975), 205–216.
- T. Simon, G. Dulac, On cumulative Tsallis entropies, Acta Appl. Math. 188 (2023), 9.
- A.D. Soares, N.J.Jr. Moura, M.B. Ribeiro, Tsallis statistics in the income distribution of Brazil, Chaos, Solitons & Fractals 88 (2016), 158–171.
- F. Suter, I. Cernat, M. Dragan, Some information measures properties of the GOS-concomitants from the FGM family, Entropy 24 (2022), 1361.
- A. Toma, Model selection criteria using divergences, Entropy 16 (2014), 2686–2698.
- A. Toma, A. Karagrigoriou, P. Trentou, Robust model selection criteria based on pseudodistances, Entropy 22 (2020), 304.
- G. Toscani, Rényi entropies and nonlinear diffusion equations, Acta Appl. Math. 132 (2014), 595–604.
- B. Trivellato, The minimal k-entropy martingale measure, Int. J. Theor. Appl. Financ. 15 (2012), 1250038.
- B. Trivellato, Deformed exponentials and applications to finance, Entropy 15 (2013), 3471–3489.
- C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988), 479–487.
- G.A. Tsekouras, C. Tsallis, Generalized entropy arising from a distribution of q indices, Phys. Rev. E 71 (2005), 046144.
- X. Wang, Y. Li, Q. Qiao, A. Tavares, Y. Liang, Water quality prediction based on machine learning and comprehensive weighting methods, Entropy 25 (2023), 1186.
- F. Wang, B.C. Vemuri, Non-rigid multi-model image registration using cross-cumulative residual entropy, Int. J. Comp. Vision 74 (2007), 201–215.
- M. Xu, P. Shang, S. Zhang, Multiscale Rényi cumulative residual distribution entropy: reliability analysis of financial time series, Chaos, Solitons & Fractals 143 (2021), 110410.
- H. Yoshioka, Y. Yoshioka, Generalized divergences for statistical evaluation of uncertainty in long-memory processes, Chaos, Solitons & Fractals 182 (2024), 114627.
- M. Younas, A. Jawad, S. Qummer, H. Moradpour, S. Rani, Cosmological implications of the generalized entropy based holographic dark energy models in dynamical Chern-Simons modified gravity, Advances in High Energy Physics, 2019 (2019), 1287932.
- T. Zhan, J. Zhou, Z. Li, Y. Deng, Generalized information entropy and generalized information dimension, Chaos, Solitons & Fractals 184 (2024), 114976.