Have a personal or library account? Click to login
Approximation of fractional derivatives by Brass-Stancu operators Cover

References

  1. O. Agratini, Application of divided differences to the study of monotonicity of a sequence of D.D. Stancu polynomials, Rev. Anal. Numér. Théor. Approx., 25 (1996), nos, 1–2, 3–10.
  2. G. Anastassiou, Fractional Korovkin theory, Chaos, Solitons & Fractals, 42(4), (2009), 2080–2094.
  3. G. Anastassiou, Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators, Cubo, 14(3) (2012), 71–83.
  4. H. Brass, Eine Verallgemeinerung der Bernsteinschen Operatoren, Abh. Math. Sem.Univ. Hamburg, 36 (1971), 111–122.
  5. T. Bostancı, G. Başcanbaz-Tunca, On Stancu operators depending on a non-negative integer, Filomat, 36(18) (2022), 6129–6138.
  6. M. Cantarini, D. Costarelli, G. Vinti, Approximation results in Sobolev and fractional Sobolev spaces by sampling Kantorovich operators, Frac. Calc. Appl. Anal., 26 (2023), 2493–2521.
  7. M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II, Geophys. J. Roy. Astr. S., 13(5) (1967), 529–539.
  8. A. Chirilă, M. Marin, The theory of generalized thermoelasticity with fractional order strain for dipolar materials with double porosity, J. Mater. Sci., 53, (2018), 3470–3482.
  9. K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, Springer-Verlag, Berlin Heildeberg, 2010.
  10. H. H. Gonska, On the composition and decomposition of positive linear operators, in: Kovtunets, V. V. (ed.) et al., Approximation Theory and its Applications. Proc. int. conf. ded. to the memory of Vl. K. Dzyadyk, Kiev, Ukraine, May 27–31, 1999. Pr. Inst. Mat. Nats. Akad. Nauk Ukr., Mat. Zastos. 31 (2000), 161–180.
  11. C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci. Numer. Simul. 51 (2017), 141–159.
  12. H. Khosravian-Arab, D. F. M. Torres, Uniform approximation of fractional derivatives and integrals with application to fractional differential equations. Nonlinear Stud., 20(4) (2013), 533–548.
  13. B. Mond, Note: On the degree of approximation by linear positive operators, J. Approx. Theory, 18 (1976), 304–306.
  14. R. Păltănea, Approximation of fractional derivatives by Bernstein operators, Gen. Math., 22(1) (2014), 91–98.
  15. D. D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20(2) (1983), 211–229.
  16. V. E. Tarasov (Ed.) Mathematical Economics: Application of fractional calculus, MDPI, Basel, 2020.
  17. Lianying Yun, Xueyan Xiang, On shape-preserving properties and simultaneous approximation of Stancu operator, Anal. Theory Appl., 24(2) (2008), 195–204.
DOI: https://doi.org/10.2478/auom-2025-0016 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 5 - 26
Submitted on: Jun 27, 2024
Published on: Jun 3, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Gülen Başcanbaz-Tunca, Ayşegül Erençin, A. Feza Güvenilir, Radu Păltănea, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.