Have a personal or library account? Click to login
Sweeping Surfaces of Polynomial Curves in Euclidean 3-space Cover
Open Access
|Apr 2025

Abstract

In this study, we investigate the surfaces created by the movement of the profile curves through the regular polynomial spine curves. To overcome the restrictions of establishing a frame of the polynomial curves at the points where the second and higher-order derivatives vanish, the Frenet-like curve (Flc) frame is considered. In this way, by introducing sweeping surfaces defined based on the Flc frame, we analyze their parameter curves to determine conditions to be geodesics, asymptotics, and principal curvature lines. Furthermore, we derive conditions of these sweeping surfaces to be minimal, developable, and Weingarten surfaces. Lastly, we provide some examples of these sweeping surfaces and illustrate their graphical representations.

DOI: https://doi.org/10.2478/auom-2025-0015 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 293 - 312
Submitted on: Jun 19, 2024
Accepted on: Oct 16, 2024
Published on: Apr 2, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Yuting Zhu, Yanlin Li, Kemal Eren, Soley Ersoy, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.