Have a personal or library account? Click to login
Weak convergence theorems for inertial Krasnoselskii-Mann iterations in the class of enriched nonexpansive operators in Hilbert spaces Cover

Weak convergence theorems for inertial Krasnoselskii-Mann iterations in the class of enriched nonexpansive operators in Hilbert spaces

Open Access
|Apr 2025

References

  1. F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal. 9, 311 (2001).
  2. H. Attouch, X. Goudon, P. Redont, The heavy ball with friction. I. The continuous dynamical system, Commun. Contemp. Math. 2(1), 134 (2000).
  3. H. Attouch, M. O. Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria, J. Differ. Equ. 179(1), 278310 (2002).
  4. H. Attouch, J. Peypouquet, P. Redont, A dynamical approach to an inertial forwardbackward algorithm for convex minimization, SIAM J. Optim. 24, 232256 (2014).
  5. H. Attouch, J. Peypouquet, The rate of convergence of Nesterovs accelerated forwardbackward method is actually faster than 1 k2, SIAM J. Optim. 26, 18241834 (2016).
  6. H. H. Bauschke, P. L. Combettes, Convex Analysis andMonotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, Springer, New York (2011).
  7. H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, H. Wolkowicz, (Eds.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications, Vol. 49. Springer (2011).
  8. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. 2(1), 183202 (2009).
  9. V. Berinde, Aproximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, 2019.
  10. V. Berinde, Iterative Approximation of Fixed Points, Lecture Notes in Mathematics, Vol. 1912. Springer, Berlin (2007).
  11. R. I. Bot, E. R. Csetnek, C. Hendrich, Inertial DouglasRachford splitting for monotone inclusion problems, Appl. Math. Comput. 256, 472487 (2015).
  12. R. I. Bot, E. R. Csetnek, An inertial alternating direction method of multipliers, Minimax Theory Appl. 1, 2949 (2016).
  13. R. I. Bot, E. R. Csetnek, An inertial forwardbackwardforward primaldual splitting algorithm for solving monotone inclusion problems, Numer. Algorithm 71, 519540 (2016).
  14. A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, Vol. 2057. Springer, Berlin (2012).
  15. A. Chambolle, T. Pock, On the ergodic convergence rates of a first-order primaldual algorithm, Math. Program. 159, 253287 (2016).
  16. S. S. Chang, Y. J. Cho, H. Zhou, (eds.), Iterative Methods for Nonlinear Operator Equations in Banach Spaces, Nova Science, Huntington (2002).
  17. C. Chen, R. H. Chan, S. Ma, J. Yang, Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci. 8, 22392267 (2015).
  18. C. E. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Lecture Notes in Mathematics, Vol. 1965. Springer, London (2009).
  19. Y. J. Cho, S. M. Kang, X. Qin, Approximation of common fixed points of an infinite family of nonexpansive mappings in Banach spaces, Comput. Math. Appl. 56, 20582064 (2008).
  20. R. Cominetti, J. A. Soto, J. Vaisman, On the rate of convergence of KrasnoselskiMann iterations and their connection with sums of Bernoullis, Isr. J. Math. 199, 757772 (2014).
  21. L. Condat, A direct algorithm for 1-d total variation denoising, IEEE Signal Process. Lett. 20, 10541057 (2013).
  22. D. Davis, W. Yin, Convergence rate analysis of several splitting schemes In: R. Glowinski, S. Osher, W. Yin, (eds.), Splitting Methods in Communication and Imaging, Science and Engineering, pp. 343349. Springer, New York (2015).
  23. Z. Drezner, (ed.): Facility Location, A Survey of Applications and Methods, Springer (1995).
  24. A. Genel, J. Lindenstrauss, An example concerning fixed points, Isr. J. Math. 22, 8186 (1975).
  25. K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, 28. Cambridge University Press, Cambridge, 1990.
  26. C. Kanzow, Y. Shehu, Generalized KrasnoselskiiMann-type iterations for nonexpansive mappings in Hilbert spaces Comput. Optim. Appl. 67, 595620 (2017).
  27. M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk 10, 123127 (1955).
  28. J. Liang, J. Fadili, G. Peyre, Convergence rates with inexact non- expansive operators, Math. Program. Ser. A. 159, 403434 (2016).
  29. D. A. Lorenz, T. Pock, An inertial forwardbackward algorithm for monotone inclusions, J. Math. Imaging Vis. 51, 311325 (2015).
  30. R. F. Love, J. G. Morris, G. O. Wesolowsky, Facilities Location. Models and Methods, Elsevier (1988).
  31. P. E. Maingé, Regularized and inertial algorithms for common fixed points of nonlinear operators, J. Math. Anal. Appl. 344, 876887 (2008).
  32. P. E. Maingé, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math. 219(1), 223236 (2008).
  33. W. R. Mann, Mean value methods in iteration, Bull. Am. Math. Soc. 4, 506510 (1953).
  34. S. Y. Matsushita, On the convergence rate of the KrasnoselskiiMann iteration Bull. Aust. Math. Soc. 96, 162170 (2017).
  35. S. I. Olaniyi, S. Yekini, New Convergence Results for Inertial Kras- noselskiiMann Iterations in Hilbert Spaces with Applications, Results in Mathematics 76, 75(2021).
  36. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc. 73, 591597 (1967).
  37. B. T. Polyak, Some methods of speeding up the convergence of iterative methods, Zh. Vychisl. Mat. Mat. Fiz. 4, 117 (1964).
  38. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67, 274276 (1979).
  39. Y. Shehu, Convergence rate analysis of inertial KrasnoselskiiMann-type iteration with applications, Numer. Funct. Anal. Optim. 39, 10771091 (2018).
  40. M. Yan, A new primaldual algorithm for minimizing the sum of three functions with a linear operator, J. Sci. Comput. 76, 16981717 (2018).
  41. Y. Yao, Y. C. Liou, Weak and strong convergence of KrasnoselskiMann iteration for hierarchical fixed point problems, Inverse Problems 24, 015015 (2008).
DOI: https://doi.org/10.2478/auom-2025-0013 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 261 - 280
Submitted on: Nov 18, 2023
|
Accepted on: Feb 7, 2024
|
Published on: Apr 2, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Liviu-Ignat Socaciu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.