References
- F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal. 9, 311 (2001).
- H. Attouch, X. Goudon, P. Redont, The heavy ball with friction. I. The continuous dynamical system, Commun. Contemp. Math. 2(1), 134 (2000).
- H. Attouch, M. O. Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria, J. Differ. Equ. 179(1), 278310 (2002).
- H. Attouch, J. Peypouquet, P. Redont, A dynamical approach to an inertial forwardbackward algorithm for convex minimization, SIAM J. Optim. 24, 232256 (2014).
- H. Attouch, J. Peypouquet, The rate of convergence of Nesterovs accelerated forwardbackward method is actually faster than 1 k2, SIAM J. Optim. 26, 18241834 (2016).
- H. H. Bauschke, P. L. Combettes, Convex Analysis andMonotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, Springer, New York (2011).
- H. H. Bauschke, R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, H. Wolkowicz, (Eds.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications, Vol. 49. Springer (2011).
- A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. 2(1), 183202 (2009).
- V. Berinde, Aproximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, 2019.
- V. Berinde, Iterative Approximation of Fixed Points, Lecture Notes in Mathematics, Vol. 1912. Springer, Berlin (2007).
- R. I. Bot, E. R. Csetnek, C. Hendrich, Inertial DouglasRachford splitting for monotone inclusion problems, Appl. Math. Comput. 256, 472487 (2015).
- R. I. Bot, E. R. Csetnek, An inertial alternating direction method of multipliers, Minimax Theory Appl. 1, 2949 (2016).
- R. I. Bot, E. R. Csetnek, An inertial forwardbackwardforward primaldual splitting algorithm for solving monotone inclusion problems, Numer. Algorithm 71, 519540 (2016).
- A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, Vol. 2057. Springer, Berlin (2012).
- A. Chambolle, T. Pock, On the ergodic convergence rates of a first-order primaldual algorithm, Math. Program. 159, 253287 (2016).
- S. S. Chang, Y. J. Cho, H. Zhou, (eds.), Iterative Methods for Nonlinear Operator Equations in Banach Spaces, Nova Science, Huntington (2002).
- C. Chen, R. H. Chan, S. Ma, J. Yang, Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM J. Imaging Sci. 8, 22392267 (2015).
- C. E. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Lecture Notes in Mathematics, Vol. 1965. Springer, London (2009).
- Y. J. Cho, S. M. Kang, X. Qin, Approximation of common fixed points of an infinite family of nonexpansive mappings in Banach spaces, Comput. Math. Appl. 56, 20582064 (2008).
- R. Cominetti, J. A. Soto, J. Vaisman, On the rate of convergence of KrasnoselskiMann iterations and their connection with sums of Bernoullis, Isr. J. Math. 199, 757772 (2014).
- L. Condat, A direct algorithm for 1-d total variation denoising, IEEE Signal Process. Lett. 20, 10541057 (2013).
- D. Davis, W. Yin, Convergence rate analysis of several splitting schemes In: R. Glowinski, S. Osher, W. Yin, (eds.), Splitting Methods in Communication and Imaging, Science and Engineering, pp. 343349. Springer, New York (2015).
- Z. Drezner, (ed.): Facility Location, A Survey of Applications and Methods, Springer (1995).
- A. Genel, J. Lindenstrauss, An example concerning fixed points, Isr. J. Math. 22, 8186 (1975).
- K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, 28. Cambridge University Press, Cambridge, 1990.
- C. Kanzow, Y. Shehu, Generalized KrasnoselskiiMann-type iterations for nonexpansive mappings in Hilbert spaces Comput. Optim. Appl. 67, 595620 (2017).
- M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk 10, 123127 (1955).
- J. Liang, J. Fadili, G. Peyre, Convergence rates with inexact non- expansive operators, Math. Program. Ser. A. 159, 403434 (2016).
- D. A. Lorenz, T. Pock, An inertial forwardbackward algorithm for monotone inclusions, J. Math. Imaging Vis. 51, 311325 (2015).
- R. F. Love, J. G. Morris, G. O. Wesolowsky, Facilities Location. Models and Methods, Elsevier (1988).
- P. E. Maingé, Regularized and inertial algorithms for common fixed points of nonlinear operators, J. Math. Anal. Appl. 344, 876887 (2008).
- P. E. Maingé, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math. 219(1), 223236 (2008).
- W. R. Mann, Mean value methods in iteration, Bull. Am. Math. Soc. 4, 506510 (1953).
- S. Y. Matsushita, On the convergence rate of the KrasnoselskiiMann iteration Bull. Aust. Math. Soc. 96, 162170 (2017).
- S. I. Olaniyi, S. Yekini, New Convergence Results for Inertial Kras- noselskiiMann Iterations in Hilbert Spaces with Applications, Results in Mathematics 76, 75(2021).
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc. 73, 591597 (1967).
- B. T. Polyak, Some methods of speeding up the convergence of iterative methods, Zh. Vychisl. Mat. Mat. Fiz. 4, 117 (1964).
- S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67, 274276 (1979).
- Y. Shehu, Convergence rate analysis of inertial KrasnoselskiiMann-type iteration with applications, Numer. Funct. Anal. Optim. 39, 10771091 (2018).
- M. Yan, A new primaldual algorithm for minimizing the sum of three functions with a linear operator, J. Sci. Comput. 76, 16981717 (2018).
- Y. Yao, Y. C. Liou, Weak and strong convergence of KrasnoselskiMann iteration for hierarchical fixed point problems, Inverse Problems 24, 015015 (2008).