Have a personal or library account? Click to login
About instability in an elastic Cosserat body with pores Cover

References

  1. Boschi, E., Ieşan, D.: A generalized theory of linear micropolar thermoelasticity. Meccanica 8(3), 154-157 (1973). https://doi.org/10.1007/BF02128724
  2. Ciarletta, M., Scalia, A.: Some Results in Linear Theory of Thermomi- crostretch Elastic Solids. Meccanica 39(3), 191-206 (2004). https://doi.org/10.1023/B:MECC.0000022843.48821.af
  3. Chandrasekharaiah, D.S.: A uniqueness theorem in the theory of elastic materials with voids. J. Elast. 18(2),173-179 (1987). https://doi.org/10.1007/BF00127556
  4. Codarcea-Munteanu, L. F., Chirilă, A.N., Marin, M.: Modeling Fractional Order Strain in Dipolar Thermoelasticity. IFAC PapersOnLine 51-2, 601-606 (2018). https://doi.org/10.1016/j.ifacol.2018.03.102
  5. Codarcea-Munteanu, L., Marin, M.: A study on the thermoelasticity of three-phase-lag dipolar materials with voids. Bound. Value Probl. 2019(137), 1-24 (2019). https://doi.org/10.1186/s13661-019-1250-9
  6. Codarcea-Munteanu, L., Marin, M.: Influence of Geometric Equations in Mixed Problem of Porous Micromorphic Bodies with Microtemperature. Mathematics 8(8) 1386, 1-16 (2020). https://doi.org/10.3390/math8081386
  7. Codarcea-Munteanu, L., Marin, M., Vlase, S.: The study of vibrations in the context of porous micropolar media thermoelasticity and the absence of energy dissipation. J. Comput. Appl. Math. (JCAMECH) 54(3): 437-454 (2023). https://doi.org/10.22059/JCAMECH.2023.365634.881
  8. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Librairie Scientifique A. Hermann et Fils, Paris (1909).
  9. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13 (2), 125-147 (1983). https://doi.org/10.1007/BF00041230
  10. Cowin, S.C.: Continuum Mechanics of Anisotropic Materials. Springer New York (2013). https://doi.org/10.1007/978-1-4614-5025_2
  11. Eringen, A.C.: Linear Theory of Micropolar Elasticity. J. Math. Mech. 15(6), 909-923 (1966). https://www.jstor.org/stable/24901442
  12. Eringen, A.C.: Foundations of micropolar thermoelasticity. International Centre for Mechanical Sciences Udine, Courses and lectures 23, Springer-Verlag, Wien GMBH (1970).
  13. Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer, New York (1999).
  14. Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44 (4), 249-266 (1972). https://doi.org/10.1007/BF00284326
  15. Gourgiotis, P.A., Bigoni, D.: The dynamics of folding instability in a constrained Cosserat medium. Phil. Trans. R. Soc. A375:20160159 (2017). http://doi.org/10.1098/rsta.2016.0159
  16. Gourgiotis, P.A., Bigoni, D.: Stress channelling in extreme couple-stress materials Part I: Strong ellipticity, wave propagations, ellipticity and discontinuity relations. J. Mech. Phys. Solids 88, 150-168 (2016). https://doi.org//10.1098/j.jmps.2015.09.006
  17. Ieşan, D.: Mecanica generalizată a solidelor. Universitatea Al. I. Cuza, Centrul de multiplicare, Iaşi (1980).
  18. Ieşan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60 (1-2), 67-89 (1986). https://doi.org/10.1007/BF01302942
  19. Koiter, W. T.: Couple stresses in the theory of elasticity, part I,II. Proc. K. Ned. Akad. Wet. B67: 17-44 (1964).
  20. Marin, M., Agarwal, R.P., Mahmoud, S.R.: Modeling a microstretch thermo-elastic body with two temperatures. Abstr. Appl. Anal. 2013, Art. ID 583464, 1-7 (2013).
  21. Marin, M., Agarwal, R.P., Codarcea, L.: A mathematical model for three- phase-lag dipolar thermoelastic bodies. J. Inequal. Appl. 2017(109), 1-16 (2017). https://doi.org/10.1186/s13660-017-1380-5
  22. Marin, M., Chirilă, A., Codarcea, L., Vlase, S.: On vibrations in Green-Naghdi thermoelasticity of dipolar bodies. An. St. Univ. Ovidius Constanţa-Seria Matematică 27(1), 125-140 (2019). https://doi.org/10.2478/auom-2019-0007
  23. Marin, M., Othman, M.I.A., Vlase, S., Codarcea-Munteanu, L.: Thermoelasticity of Initially Stressed Bodies with Voids: A Domain of Influence. Symmetry-Babel 11(4) 573, 1-12, Multidisciplinary Digital Publishing Institute MDPI (2019). https://doi.org/10.3390/sym11040573
  24. Marin, M., Öchsner, A., Bhatti, M.M.: Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies. ZAMM-Journal of Applied Mathematics and Mechanics 100(12)/e202000090 (2020). https://doi.org/10.1002/zamm.202000090
  25. Medeiros, R.A.R., Pitangueira, R.L.S., Gori, L.: Numerical evaluation of micropolar elastic parameters for a heterogeneous microstructure. XL CILAMCE Ibero-Latin-American Congress On Computational Metods In Engineering, Natal, RN-Brasil (2019)
  26. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415-448 (1962). https://doi.org/10.1007/BF00253946
  27. Nowacki, W.: Couple-Stresses in the Theory of Thermoelasticity. Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids. IUTAM Symposia (International Union of Theoretical and Applied Mechanics), 259-278, Springer, Vienna (1968). https://doi.org/10.1007/978-3-7091-5581-3_17
  28. Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72 (2), 175-201 (1979). https://doi.org/10.1007/BF00249363
  29. Pabst W.: Micropolar Materials. Ceramics-Silicáty 49(3) 170-180 (2005). https://www.ceramics-silicaty.cz/2005/pdf/200503_170.pdf
  30. Passarella, F., Zampoli, V.: On the Theory of Micropolar Thermoelasticity without Energy Dissipation. J. Therm. Stresses 33 (4), 305-317 (2010). https://doi.org/10.1080/01495731003656907
  31. Sadd, H. M.: Elasticity: Theory, Applications, and Numerics. Elsevier Academic Press Butterworth-Heinemann, USA (2005).
  32. Vlase, S., Nastac,C., Marin, M., Mihalcica, M.: A method for the study of the vibration of mechanical bars systems with simmetries. Acta Tech. Napocensis, Ser. Appl. Math. Mech. Eng. 60(4), 539-544 (2017).
  33. Vlase , S., Marin, M., Scutaru, M.L., Munteanu, R.: Coupled transverse and torsional vibrations in a mechanical system with two identical beams. AIP Advances 7(6):065301 (2017). https://doi.org/10.1063/1.4985271
  34. Voigt, W.: Theoretische Studien ber die Elasticitätsverhältnisse der Krystalle. I. Abh. Gessel. Wiss. Götingen 34, 3-52 (1887). http://eudml.org/doc/135896
DOI: https://doi.org/10.2478/auom-2025-0009 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 177 - 200
Submitted on: Jan 29, 2024
Accepted on: Apr 30, 2024
Published on: Apr 2, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 L. Codarcea-Munteanu, M. Marin, A. E. Abouelregal, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.