References
- J.C. Baez, The Octonions, Bulletin of the American Mathematical Society, 39:2 (2001), 145-205.
- A. Carriazo, L.M. Fernández, J. Núñez, Combinatorial structures associated with Lie algebras of finite dimension, Linear Algebra Appl. 389 (2004), 43–61.
- A. Behn, I. Correa and I.R. Hentzel, On Flexible Algebras Satisfying x(yz) = y(zx), Algebra Colloquium, 17:1, (2010), 881–886.
- Y. Cabrera, M. Siles and M. V. Velasco, Evolution algebras of arbitrary dimension and their decompositions, Linear Algebra Appl. 495 (2016), 122-162.
- M. Ceballos, J. Núñez, A. F. Tenorio, Study of Lie algebras by using combinatorial structures, Linear Algebra Appl. 436 (2012), 349–363.
- M. Ceballos, J. Núñez and A.F. Tenorio, Finite-dimensional Leibniz algebras and combinatorial structures, Communications in Contemporary Mathematics 20:1 (2018), 34 pag.
- M. Ceballos, J. Núñez and A.F. Tenorio, Malcev Algebras and Combinatorial Structures, Applied Mathematics and Information Sciences 9, 2L (2015), 297–304.
- M. Ceballos, J. Núñez and A.F. Tenorio, Finite dimensional evolution algebras and (pseudo)digraphs, Mathematical Methods in the Applied Sciences DOI: 10.1002/mma.6632 (2020).
- M. Ceballos, J. Núñez and A.F. Tenorio, Zinbiel algebras and combinatorial structures, Analele Stiintifice ale Universitatii Ovidius Constanta. In press.
- A. Elduque and A. Labra, Evolution algebras and graphs, Journal of Algebra and Its Applications 14:7 (2015) 1550103, 10 pp.
- S. Gonzlez, Non-Associative Algebra and Its Applications. Springer, Dordrecht, 1994.
- F. Haray, Graph Theory. Addison-Wesley, Reading, 1969.
- M.N. Hounkonnou and M.L. Dassoundo, Center-symmetric algebras and bialgenras: relevant properties and consequences, Geometric Methods in Physics, XXXIV Workshop (2015), Trends in Maths., 261–273.
- E. Kleinfeld and L.A. Kokoris, Flexible algebras of degree one, Proc. of Amer. Math. Soc., 13:6, (1962), 891–893.
- F. Kosier, On a class of non-flexible algebras, Trans. of Amer. Math. Soc., 102:2, (1962), 299–318.
- M. Liebmann, H. Rhaak, B. Henschenmacher, Non-Associative Algebras and Quantum Physics, arXiv:1909.04027 [math-ph] (2019).
- J.H. Mayne, Flexible algebras of degree two, Trans. of Amer. Math. Soc. 172, (1972), 69–81.
- J. Núñez, M. Silvero, M.T. Villar, A particular type of non-associative algebras and graph theory, Proceedings of the 2011 international conference on Applied and computational mathematics (2011).
- R. H. Oehmke, On flexible algebras, Annals of Mathematics, 68:2, (1958), 221–230.
- M. Primc, Basic representations for classical affine Lie algebras, J. of Algebra 228 (2000), 1–50.
- S. Pumplün, On flexible quadratic algebras, Acta Mathematica Hungarica 119, (2007), 323–332.
- R.D. Schafer, On the algebras formed by the Cayley-Dickson process, American Journal of Mathematics, 76 (1954), 435–446.
- J.P. Serre, Algèbres de Lie Semi-Simples Complexes, Benjamin Inc., New York, 1996.
- J.P. Tian, Evolution algebras and their applications, Lecture Notes in Mathematics 1921, Springer, Berlin, 2008.
- R. Turdibaev, Bipartite graphs and the structure of finite-dimensional semisimple Leibniz algebras, International Electronic Journal of Algebra, DOI: 10.24330/ieja.587009 (2018).
- H.S. Wilf, Algorithms and Complexity, Prentice Hall, Englewood Cliffs, 1986.
- J.H.C. Whitehead, Combinatorial homotopy I, Bulletin of the American Mathematical Society 55:5 (1949), 213–245.