References
- O. P. Ahuja, A. etinkaya and Y. Polatoğlu, Bieberbach-de Branges and Fekete-Szeg inequalities for certain families of q-convex and q-close-to-convex functions, J. Comput. Anal. Appl. 26(4) (2019), 639–649 .
- H. Aldweby, M. Darus, Coefficient estimates of classes of q-starlike and q-convex functions, Advanced Studies in Contemporary Mathematics, 26 (1) (2016), 21-26.
- W. A. Al-Salam, q-Bernoulli numbers and polynomials, Math. Nachr. Vol. 17 (1959), 239-260.
- D. G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc. 69 (1963), 362–366.
- L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987–1000.
- J. Choi, P. J. Anderson and H. M. Srivastava, Carlitz’s q-Bernoulli and q-Euler numbers and polynomials and a class of q-Hurwitz zeta functions, Appl. Math. Comput. 215 (2009), 1185-1208.
- M. ağlar, H. Orhan, H. M. Srivastava, Coefficient bounds for q-starlike functions associated with q-Bernoulli numbers, Journal of Applied Analysis and Computation, 13(4) (2023), 2354-2364.
- U. Grenander, G. Szeg, Toeplitz forms and their applications, California Monographs in Mathematical Sciences Univ. California Press, Berkeley, 1958.
- M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl. 14 (1990), 77–84.
- F. H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math., 41 (1910), 193–203.
- F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46 (1908), 253–281.
- V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002.
- N. Koblitz, On Carlitz’s q-Bernoulli numbers, J. Number Theory 14 (1982), 332–339.
- S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically q-starlike functions associated with the Janowski functions, J. Inequal. Appl. 2019 (2019), 88.
- S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative, J. Funct. Spaces 2018 (2018), 8492072.
- S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of q-starlike functions, Symmetry 11 (2019), 347.
- S. Nalci, O. K. Pashaev, q-Bernoulli numbers and zeros of q-Sine function, arxiv:1202.2265v1, 2012.
- J. W. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (2) (1976), 337-346.
- Y. Polatoğlu, Growth and distortion theorems for generalized q-starlike functions, Advances in Mathematics Scientific Journal 5 (1) (2016), 7-12.
- Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Gvttingen, 1975.
- C. S. Ryoo, A note on q-Bernoulli numbers and p olynomials, Appl. Math. Lett. Vol. 20 (2007), 524-531.
- T. M. Seoudy, M. K. Aouf, Coefficent estimates of new classes q-starlike and q-convex functions of complex order, Journal of Mathematical Inequalities Volume 10, Number 1 (2016), 135–145.
- H. M. Srivastava, Univalent Functions, Fractional Calculus, and Associated Generalized Hypergeometric Functions, in: H. M. Srivastava, S. Owa (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989, 329–354.
- H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000), 77-84.
- H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci. 5 (2011), 390-444.
- H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry 11 (2019), 292.
- H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of q-starlike functions associated with the Janowski functions, Filomat 33 (2019), 2613–2626.
- H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J. 48 (2019), 407–425.
- H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain, Mathematics 7 (2) (2019), 181.
- H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound for a subclass of q-starlike functions associated with the q-exponential function, Bull. Sci. Math. 167 (2021), 102942.
- A. Soni, A. etinkaya, Fekete-Szeg inequalities for q-starlike and q-convex functions involvıng q-analogue of Ruscheweyh-type differential operator. Palestine Journal of Mathematics, 11(1) (2022), 541–548.
- H. E. . Uar, Coefficient inequality for q-starlike functions, Appl. Math. Comput. 276 (2016), 122-126.
- B. Wongsaijai, N. Sukantamala, Certain properties of some families of generalized starlike functions with respect to q-calculus, Abstr. Appl. Anal. 2016 (2016), 6180140.