Have a personal or library account? Click to login
An integral formula for the coefficients of the inverse cyclotomic polynomial Cover

An integral formula for the coefficients of the inverse cyclotomic polynomial

Open Access
|Apr 2025

References

  1. D. Andrica, O. Bagdasar, A new formula for the coefficients of Gaussian polynomials, An. Şt. Univ. Ovidius Constanţa 27(3), 25–35 (2019)
  2. D. Andrica, O. Bagdasar, On some results concerning the polygonal polynomials, Carpathian J. Math., 35(1), 1–12 (2019)
  3. D. Andrica, O. Bagdasar, Some remarks on a general family of complex polynomials, Appl. Anal. Discr. Math., 13(2), 605–618 (2019)
  4. D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems, Springer (2020)
  5. D. Andrica, O. Bagdasar, On cyclotomic polynomial coefficients, Malays. J. Math. Sci., in: Proceedings of “Groups, Group Rings, and Related Topics - 2017” (GGRRT 2017), 19–22 Nov 2017, Khorfakan, UAE 14(3), 389–402 (2020)
  6. D. Andrica, O. Bagdasar, Remarks on the coefficients of the inverse cyclotomic polynomials, Mathematics 11(17) (2023)
  7. D. Andrica, O. Bagdasar, Some remarks on the coefficients of cyclotomic polynomials. In: J. Gua‘rdia, N. Minculete, D. Savin, M. Vela, A. Zekhnini (eds.), New Frontiers in Number Theory and Applications, Trends in Mathematics, Springer (2023) (to appear)
  8. D. Andrica, O. Bagdasar, G.-C. T¸ urcaş, Topics on Discrete Mathematics and Combinatorics, Cluj University Press, 318pp (2023)
  9. G. Bachman, On the Coefficients of Cyclotomic Polynomials, Mem. Amer. Math. Soc., Vol. 106, no. 510 (1993)
  10. D. M. Bloom, On the coefficients of the cyclotomic polynomials, Amer. Math. Monthly, 75, 372–377 (1968)
  11. G. P. Dresden, On the middle coefficient of a cyclotomic polynomial Amer. Math. Monthly, 111(6), 531–533 (2004)
  12. M. Endo, On the coefficients of the cyclotomic polynomials Comment. Math. Univ. St. Pauli., 23, 121–126 (1974/75)
  13. P. Erdo¨s, On the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc., 52, 179–184 (1946)
  14. P. Erdo¨s, R. C. Vaughan, Bounds for r-th coefficients of cyclotomic polynomials, J. London Math. Soc., 8(2), 393–400 (1974)
  15. G. H. Hardy, P. V. Seshu Aiyar, B. M. Wilson (Eds), Collected Papers of Srinivasa Ramanujan, Cambridge University Press, 355pp (2016)
  16. A. Grytezuk, B. Tropak, A numerical method for the determination of the cyclotomic polynomial coefficients. In: A. Pethö et al (eds.), Computational Number Theory, Berlin: de Gruyter, 15–20 (1991)
  17. C. G. Ji, W. P. Li, Values of coefficients of cyclotomic polynomials, Discrete Math. 308(23), 5860–5863 (2008)
  18. A. Kosyak, P. Moree, E. Sofos, B. Zhang, Cyclotomic polynomials with prescribed height and prime number theory, Mathematika, 67, 214–234 (2021)
  19. E. Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc., 42, 389–392 (1936)
  20. D. H. Lehmer, Some properties of the cyclotomic polynomial, J. Math. Anal. Appl., 42(1), 105–117 (1966)
  21. P. Moree, Inverse cyclotomic polynomials, J. Number Theory, 129, 667–680 (2009)
  22. The On-Line Encyclopedia of Integer Sequences, http://oeis.org, OEIS Foundation Inc. (2011)
  23. C. Sanna, A survey on coefficients of cyclotomic polynomials, Expositiones Mathematicae, 40(3), 469–494 (2022)
DOI: https://doi.org/10.2478/auom-2025-0002 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 33 - 48
Submitted on: Feb 14, 2024
Accepted on: Jul 1, 2024
Published on: Apr 2, 2025
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Dorin Andrica, Ovidiu Bagdasar, George Cătălin Ţurcaş, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.