References
- D. Andrica, O. Bagdasar, A new formula for the coefficients of Gaussian polynomials, An. Şt. Univ. Ovidius Constanţa 27(3), 25–35 (2019)
- D. Andrica, O. Bagdasar, On some results concerning the polygonal polynomials, Carpathian J. Math., 35(1), 1–12 (2019)
- D. Andrica, O. Bagdasar, Some remarks on a general family of complex polynomials, Appl. Anal. Discr. Math., 13(2), 605–618 (2019)
- D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems, Springer (2020)
- D. Andrica, O. Bagdasar, On cyclotomic polynomial coefficients, Malays. J. Math. Sci., in: Proceedings of “Groups, Group Rings, and Related Topics - 2017” (GGRRT 2017), 19–22 Nov 2017, Khorfakan, UAE 14(3), 389–402 (2020)
- D. Andrica, O. Bagdasar, Remarks on the coefficients of the inverse cyclotomic polynomials, Mathematics 11(17) (2023)
- D. Andrica, O. Bagdasar, Some remarks on the coefficients of cyclotomic polynomials. In: J. Gua‘rdia, N. Minculete, D. Savin, M. Vela, A. Zekhnini (eds.), New Frontiers in Number Theory and Applications, Trends in Mathematics, Springer (2023) (to appear)
- D. Andrica, O. Bagdasar, G.-C. T¸ urcaş, Topics on Discrete Mathematics and Combinatorics, Cluj University Press, 318pp (2023)
- G. Bachman, On the Coefficients of Cyclotomic Polynomials, Mem. Amer. Math. Soc., Vol. 106, no. 510 (1993)
- D. M. Bloom, On the coefficients of the cyclotomic polynomials, Amer. Math. Monthly, 75, 372–377 (1968)
- G. P. Dresden, On the middle coefficient of a cyclotomic polynomial Amer. Math. Monthly, 111(6), 531–533 (2004)
- M. Endo, On the coefficients of the cyclotomic polynomials Comment. Math. Univ. St. Pauli., 23, 121–126 (1974/75)
- P. Erdo¨s, On the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc., 52, 179–184 (1946)
- P. Erdo¨s, R. C. Vaughan, Bounds for r-th coefficients of cyclotomic polynomials, J. London Math. Soc., 8(2), 393–400 (1974)
- G. H. Hardy, P. V. Seshu Aiyar, B. M. Wilson (Eds), Collected Papers of Srinivasa Ramanujan, Cambridge University Press, 355pp (2016)
- A. Grytezuk, B. Tropak, A numerical method for the determination of the cyclotomic polynomial coefficients. In: A. Pethö et al (eds.), Computational Number Theory, Berlin: de Gruyter, 15–20 (1991)
- C. G. Ji, W. P. Li, Values of coefficients of cyclotomic polynomials, Discrete Math. 308(23), 5860–5863 (2008)
- A. Kosyak, P. Moree, E. Sofos, B. Zhang, Cyclotomic polynomials with prescribed height and prime number theory, Mathematika, 67, 214–234 (2021)
- E. Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc., 42, 389–392 (1936)
- D. H. Lehmer, Some properties of the cyclotomic polynomial, J. Math. Anal. Appl., 42(1), 105–117 (1966)
- P. Moree, Inverse cyclotomic polynomials, J. Number Theory, 129, 667–680 (2009)
- The On-Line Encyclopedia of Integer Sequences, http://oeis.org, OEIS Foundation Inc. (2011)
- C. Sanna, A survey on coefficients of cyclotomic polynomials, Expositiones Mathematicae, 40(3), 469–494 (2022)