References
- S. Amari, Information geometry of the EM and em algorithms for neural networks, Neural Netw. 8 (1995), 1379-1408.
- S. Amari, H. Nagaoka, Methods of information geometry, American Mathematical Society, Providence, Oxford University Press, Oxford, 2000.
- V. Balan, E. Peyghan, E. Sharahi, Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric, Hacet. J. Math. Stat. 49 (2020), 120-135.
- M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: A geometric framework for learning from labeled and unlabeled examples, J. Mach. Learn. Res. 7 (2006), 2399-2434.
- O. Calin, C. Udrişte, Geometric modeling in probability and statistics, Springer International Publishing, Cham, Switzerland, 2014.
- A. Caticha, The information geometry of space-time, Proceedings 33 (2019), 3015, 2019.
- M. Crasmareanu, General adapted linear connections in almost paracontact and contact geometries, Balkan J. Geom. Appl. 25 (2) (2020), 12-29.
- O. Durmaz, A. Gezer, Conjugate connections and their applications on pure metallic metric geometries. Ricerche Mat. (2023). https://doi.org/10.1007/s11587-023-00782-0.
- T. Fei, J. Zhang, Interaction of Codazzi couplings with (para-) Kähler geometry, Results Math. 72 (2017), 2037-2056.
- H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato, M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys. 117 (2017), 179-186.
- G. T. Ganchev and A. V. Borisov, Note on the almost complex manifolds with a Norden metric, C. R. Acad. Bulgare Sci. 39 (5) (1986), 31–34.
- A. Gezer, H. Cakicioglu, Notes concerning Codazzi pairs on almost anti-Hermitian manifolds, Appl. Math. J. Chinese Univ. 38 (2) (2023), 223-234.
- A. Gray, L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (4) (1980), 35–58.
- S. Grigorian, J. Zhang, (Para-) holomorphic and conjugate connections on (para-) Hermitian and (para-) Kähler manifolds, Results Math. 74 (2019), paper No 150, 28.
- M. Iscan, A. A. Salimov, On Kähler-Norden manifolds, Proc. Indian Acad. Sci. Math. Sci. 119 (1) (2009), 71–80.
- T. Kurose, Statistical manifolds admitting torsion, Geometry and something, Fukuoka University, Fukuoka-shi, Japan, 2007.
- S. Lauritzen. In: Statistical Manifolds, Eds. S. Amari, O. Barndorff-Nielsen, R. Kass, S. Lauritzen, C. R. Rao, Differential Geometry in Statistical Inference, IMS Lecture Notes, vol.10, Institute of Mathematical Statistics, Hayward, 1987, 163–216.
- M. Manev, D. Mekerov, On Lie groups as quasi-Kähler manifolds with Killing Norden metric, Adv. Geom. 8 (3) (2008), 343–352.
- E. Peyghan, D. Seifipour, A. Gezer, Statistical structures on tangent bundles and Lie groups, Hacet. J. Math. Stat. 50 (2021), 1140-1154.
- A. Salimov, Tensor operators and their applications, Mathematics Research Developments, Nova Science Publishers, Inc., New York, 2013.
- A. A. Salimov, M. Iscan, K. Akbulut, Notes on para-Norden-Walker 4- manifolds, Int. J. Geom. Methods Mod. Phys. 7 (8) (2010), 1331–1347.
- S. Tachibana, Analytic tensor and its generalization, Tohoku Math. J. 12 (1960), 208-221.
- M. Teofilova, Conjugate connections and statistical structures on almost Norden manifolds, arXiv:1812.04512, 2018.