References
- A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sole, The Z4- linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301319.
- C. E. Shannon, A mathematical theory of communcation, Bell Syst. Tech. J., 27 (1948), 379-423 and 623-656.
- D. Boucher, W. Geiselmann, F. Ulmmer, Skew cyclic codes, Appl. AlgebraEng. Commun. Comput., 18(14) (2007), 379389.
- F. Caliskan, T. Yildirim, R. Aksoy, Non-binary quantum codes from cyclic codes over 𝔽p × (𝔽p + v𝔽p), International Journal of Theoretical Physics, 62(2) (2023), 62-69.
- F. Gursoy, I. Siap, B. Yildiz, Construction of skew cyclic codes over 𝔽q + v𝔽q, Adv. Math. Commun., 8, (2014), 313-322.
- I. Siap, T. Abualrub, N. Aydin, N., P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inform. Coding Theory, 2 (2011), 10-20.
- J. Gao, L. Shen, F. W. Fu, A Chinese remaninder theorem approach to skew generalized quasi-cyclic codes, Int. Crypto. Commun, 8(1) (2016), 51-56.
- J. Li, J. Gao, F. W. Fu, 𝔽qR-Linear skew cyclic codes, Int. J. Algebra Mathematics and Computing, DOI: 10.1007/s12190-021-01588-9.
- J. Li, J. Gao, F. W. Fu, F. Ma, F 𝔽qℝ-linear skew constacyclic codes and their application of constructing quantum codes, Quantum Inf. Process, 19(7) (2020), 193.
- R. Aksoy, F. Caliskan, Self-dual codes over 𝔽2 × (𝔽2 + v𝔽2), Crypto. Commun, 13(1) (2021), 129141.
- R. Aksoy, F. Caliskan, Linear codes over 𝔽4ℝ and the MacWilliams identities, Appl. Algebra Eng. Commun. Comput, 31(2) (2019), 135147.
- T. Abualrub, A. Ghrayeb, N. Aydin, I. Siap, On the construction of skew quasi-cyclic codes, IEEE Trans. Inf. Theory, 56(5) (2010), 20812090.
- T. Abualrub, N. Aydin, P. Seneviratne, On θ-cyclic codes over 𝔽2 + u𝔽2, Australas. J. Combin., 54(2) (2012), 115-126.
- M. Bhaintwal, Skew quasi-cyclic codes over Galois rings, Des. Codes Cryptogr, 62(1) (2012), 85-101.
- M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available online at http://www.codetables.de (1995).
- N. Benbelkacem, M. F. Ezerman, T. Abualrub, N. Aydin, A. Batoul, Skew Cyclic Codes over 𝔽4ℝ., Int. J. Algebra its Appl., DOI: 10.1142/S0219498822500657.
- S. Jitman, S. Ling, P. Udomkavanich, Skew constacyclic codes over finite chain rings, Australas. Adv. Math. Commun, 6(1) (2012), 3963.
- S. Zhu, Y. Wang, M. Shi, Some results on cyclic codes over 𝔽2 + v𝔽2, IEEE Trans. Inform. Theory, 56 (2010), 1680-1684.
- T. Yildirim, Construction of cyclic DNA codes over ℤ4R, Indian J. Pure Appl Math, doi.org/10.1007/s13226-023-00451-w.
- X. Hou, J. Gao, ℤpℤp[v]-additive cyclic codes are asymptotically good, J. Appl. Math. Comput, https://doi.org/10.1007/s12190-020-01466-w (2020).