Have a personal or library account? Click to login
Linear Skew Cyclic Codes over 𝔽qS Cover

References

  1. A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Sole, The Z4- linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301319.
  2. C. E. Shannon, A mathematical theory of communcation, Bell Syst. Tech. J., 27 (1948), 379-423 and 623-656.
  3. D. Boucher, W. Geiselmann, F. Ulmmer, Skew cyclic codes, Appl. AlgebraEng. Commun. Comput., 18(14) (2007), 379389.
  4. F. Caliskan, T. Yildirim, R. Aksoy, Non-binary quantum codes from cyclic codes over 𝔽p × (𝔽p + v𝔽p), International Journal of Theoretical Physics, 62(2) (2023), 62-69.
  5. F. Gursoy, I. Siap, B. Yildiz, Construction of skew cyclic codes over 𝔽q + v𝔽q, Adv. Math. Commun., 8, (2014), 313-322.
  6. I. Siap, T. Abualrub, N. Aydin, N., P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inform. Coding Theory, 2 (2011), 10-20.
  7. J. Gao, L. Shen, F. W. Fu, A Chinese remaninder theorem approach to skew generalized quasi-cyclic codes, Int. Crypto. Commun, 8(1) (2016), 51-56.
  8. J. Li, J. Gao, F. W. Fu, 𝔽qR-Linear skew cyclic codes, Int. J. Algebra Mathematics and Computing, DOI: 10.1007/s12190-021-01588-9.
  9. J. Li, J. Gao, F. W. Fu, F. Ma, F 𝔽qℝ-linear skew constacyclic codes and their application of constructing quantum codes, Quantum Inf. Process, 19(7) (2020), 193.
  10. R. Aksoy, F. Caliskan, Self-dual codes over 𝔽2 × (𝔽2 + v𝔽2), Crypto. Commun, 13(1) (2021), 129141.
  11. R. Aksoy, F. Caliskan, Linear codes over 𝔽4ℝ and the MacWilliams identities, Appl. Algebra Eng. Commun. Comput, 31(2) (2019), 135147.
  12. T. Abualrub, A. Ghrayeb, N. Aydin, I. Siap, On the construction of skew quasi-cyclic codes, IEEE Trans. Inf. Theory, 56(5) (2010), 20812090.
  13. T. Abualrub, N. Aydin, P. Seneviratne, On θ-cyclic codes over 𝔽2 + u𝔽2, Australas. J. Combin., 54(2) (2012), 115-126.
  14. M. Bhaintwal, Skew quasi-cyclic codes over Galois rings, Des. Codes Cryptogr, 62(1) (2012), 85-101.
  15. M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available online at http://www.codetables.de (1995).
  16. N. Benbelkacem, M. F. Ezerman, T. Abualrub, N. Aydin, A. Batoul, Skew Cyclic Codes over 𝔽4ℝ., Int. J. Algebra its Appl., DOI: 10.1142/S0219498822500657.
  17. S. Jitman, S. Ling, P. Udomkavanich, Skew constacyclic codes over finite chain rings, Australas. Adv. Math. Commun, 6(1) (2012), 3963.
  18. S. Zhu, Y. Wang, M. Shi, Some results on cyclic codes over 𝔽2 + v𝔽2, IEEE Trans. Inform. Theory, 56 (2010), 1680-1684.
  19. T. Yildirim, Construction of cyclic DNA codes over ℤ4R, Indian J. Pure Appl Math, doi.org/10.1007/s13226-023-00451-w.
  20. X. Hou, J. Gao, ℤpp[v]-additive cyclic codes are asymptotically good, J. Appl. Math. Comput, https://doi.org/10.1007/s12190-020-01466-w (2020).
DOI: https://doi.org/10.2478/auom-2024-0035 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 173 - 192
Submitted on: Sep 18, 2023
Accepted on: Dec 4, 2023
Published on: Oct 17, 2024
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Tulay Yildirim, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.