References
- V. E. Brimkov, R. Klette, Border and surface tracing - theoretical foundations, IEEE Trans. Patt. Anal. Machine. Intell., 30 (2008), 577–590.
- M. Greenberg, Lectures on Algebraic Topology, Benjamin, New York, 1967.
- B. Gru¨nbaum, G. C. Shepard, Tilings & Patterns, Dover Publ., New York, 2020.
- E. D. Khalimsky, R. Kopperman, P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl, 36 (1990), 1–17.
- T. Y. Kong, W. Roscoe, Continuous analogs of axiomatized digital surfaces, Comput. Vision Graphics Image Process., 29 (1985), 60–86.
- T. Y. Kong, A. Rosenfeld, Digital topology: Introduction and survey, Comput. Vision Graphics Image Process., 48 (1989), 357–393.
- R. Kopperman, P.R. Meyer, R. Wilson, RA Jordan surface theorem for three-dimensional digital spaces, Discrete Comput. Geom., 6 (1991), 155–161.
- E. Melin, Digital surfaces and boundaries in Khalimsky spaces, J. Math. Imaging and Vision, 28 (2007), 169–177.
- D. G. Morgenthaler, A. Rosenfeld, Surfaces in three dimensional digital images, Information and Control 28 (1981), 227–247.
- M. Reed, A. Rosenfeld, Recognition of surfaces in three dimensional digital images, Information and Control 53 (1982), 108–120.
- A. Rosenfeld, Picture Languages, Academic Press, New York, 1979.
- J. Šlapal, Graphs with a path partition for structuring digital spaces, Information Sciences, 233 (2013), 305–312.
- J. Šlapal, A ternary relation for structuring the digital plane, in: AMCSE 2016, ITM Web of Conferences 9 (2017), 01012, pp. 1-5.
- J. Šlapal, Relation-induced connectedness in the digital plane, Aequat. Math. 92 (2018), 75–90.
- J. Šlapal, A 3D digital Jordan-Brouwer separation theorem, Comput. Appl. Math., 39 (2020), 211, pp. 1–10.