Have a personal or library account? Click to login
Functional equations on discrete sets Cover

References

  1. J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York-London. (1966) [Mathematics in Science and Engineering, Vol. 19].
  2. J. Aczél, Diamonds are not the Cauchy extensionist’s best friend, C. R.Math. Rep. Acad. Sci. Canada 5 (1983), 259–264.
  3. J. Aczél, J. Dhombres, Functional equations in several variables, Cambridge University Press (1989). https://doi.org/10.1017/CBO9781139086578
  4. J. Aczél, P. Erdős, The non-existence of a Hamel-basis and the general solution of Cauchy’s functional equation for nonnegative numbers, Publ. Math. Debrecen 12 (1965) 259–265.
  5. A. L. Cauchy, Cours d’analyse de I’cole Royale Polytechnique, Pemire Parite, Analyse algbrique, Paris 1821, [Oeuvres (2)3, Paris, (1897)].
  6. Z. Daróczy, K. Győry, Die Gauchysche Funktionalgleichung ber diskrete Mengen, Publ. Math. Debrecen 13 (1966) 249–255.
  7. Z. Daróczy, L. Losonczi, Über die Erweiterung der auf einer Punktmenge additiven Funktionenen, Publ. Math. Debrecen 14 (1967) 239–245.
  8. Euklidesz, Στoιχεια, (BCE 300). In hungarian: Elemek, translated by Gyula Mayer, Gondolat (1983).
  9. C. F. Gauss, Theoria motus corporum coelestium, Hamburg (1809) (Werke VII, Leipzig, 1906).
  10. T. Glavosits, Short remark to the Rimán’s theorem, in preparation
  11. T. Glavosits, Zs. Karácsony, Existence and uniqueness theorems for functional equations, (Comm. in Math. 32/1 (2023) 93–102. https://doi.org/10.46298/cm.10830
  12. Edited by R. L. Graham, J. Nesetil, S. Butler, The Mathematics of Paul Erdős I, Springer (2013) https://doi.org/10.1007/978-1-4614-7258-2
  13. M. Kuczma, An introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality, First edition: Uniwersytet Slaski w Katowicach (1985) Second edition: Birkhuser Basel (2009). https://doi.org/10.1007/978-3-7643-8749-5
  14. K. Lajkó, Applications of extensions of additive functions, Aequationes. Math. 11 (1974) 68–76. https://doi.org/10.1007/BF01832660
  15. A. M. Legendre, Elements de gometric, Paris (1791), Note II.
  16. F. Radó, J. A. Baker, Pexider’s equation and aggregation of allocations, Aequationes Math. 32 (1987) 227–239. https://doi.org/10.1007/BF02311311
  17. J. Rimán, On an extension of Pexider equation, Zbornik Radova Math. Inst. Beograd N. S. 1/9 (1976) 65–72.
  18. L. Székelyhidi, Nyílt ponthalmazon additív fu¨ggvény általános előállítása (The general representation of an additive function on an open point set), (in Hungarian) Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 21 (1972). 503–509.
DOI: https://doi.org/10.2478/auom-2024-0030 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 89 - 102
Submitted on: Jul 23, 2023
Accepted on: Dec 4, 2023
Published on: Oct 17, 2024
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 T. Glavosits, Zs. Karácsony, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.