Have a personal or library account? Click to login
Existence results for a nonlocal q-integro multipoint boundary value problem involving a fractional q-difference equation with dual hybrid terms Cover

Existence results for a nonlocal q-integro multipoint boundary value problem involving a fractional q-difference equation with dual hybrid terms

Open Access
|Oct 2024

References

  1. Y. Xu, W. Li, Finite-time synchronization of fractional-order complex-valued coupled systems, Phys. A 549 (2020), 123903.
  2. Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Trans. Contr. Sys. Techn. 20 (2012), 763-769.
  3. M.S. Ali, G. Narayanan, V. Shekher, A. Alsaedi, B. Ahmad, Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Non-linear Sci. Numer. Simul. 83 (2020), 105088, 22 pp.
  4. X. Zheng, H. Wang, An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation, SIAM J. Numer. Anal. 58 (2020), 2492-2514.
  5. M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton–zooplankton system, Ecological Modelling, 318 (2015), 8-18.
  6. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006.
  7. B. Ahmad, S.K. Ntouyas, Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021.
  8. H. Alsulami, M. Kirane, S. Alhodily, T. Saeed, Nyamoradi, N. Existence and multiplicity of solutions to fractional p-Laplacian systems with concave-convex nonlinearities, Bull. Math. Sci. 10 (2020), no.1, 2050007, 20 pp.
  9. C. Kiataramkul, S.K. Ntouyas, J. Tariboon, Existence results for ψ-Hilfer fractional integro-differential hybrid boundary value problems for differential equations and inclusions. Adv. Math. Phys. 2021, 2021, 1–12.
  10. J.J. Nieto, Fractional Euler numbers and generalized proportional fractional logistic differential equation. Fract. Calc. Appl. Anal. 2022, 25, 876–886.
  11. Z. Laadjal, F. Jarad, Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Math. 2023, 8, 1172–1194.
  12. R. P. Agarwal, A. Assolami, A. Alsaedi, B. Ahmad, Existence results and Ulam-Hyers stability for a fully coupled system of nonlinear sequential Hilfer fractional differential equations and integro-multistrip-multipoint boundary conditions, Qual. Theory Dyn. Syst. 21 (2022), Paper No. 125, 33 pp.
  13. J.R. Graef, L. Kong, Positive solutions for a class of higher order boundary value problems with fractional q-derivatives, Appl. Math. Comput. 218 (2012) 9682–9689.
  14. B. Ahmad, S.K. Ntouyas, J. Tariboon, Quantum calculus. New concepts, impulsive IVPs and BVPs, inequalities, Trends in Abstract and Applied Analysis, 4. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016.
  15. K. Ma, X. Li, S. Sun, Boundary value problems of fractional q-difference equations on the half-line, Bound. Value Probl. (2019), Paper No. 46, 16 pp.
  16. J. Wang, C. Bai, Finite-time stability of q-fractional damped difference systems with time delay, AIMS Math. 6 (2021) 12011-12027.
  17. M. Jiang, R. Huang, Existence of solutions for q-fractional differential equations with nonlocal Erdélyi-Kober q-fractional integral condition, AIMS Mathematics, 5 (2020), 6537-6551.
  18. S. Liang, M.E. Samei, New approach to solutions of a class of singular fractional q-differential problem via quantum calculus, Adv. Difference Equ. 2020, Paper No. 14, 22 pp.
  19. C. Bai, D. Yang, The iterative positive solution for a system of fractional q-difference equations with four-point boundary conditions, Discrete Dyn. Nat. Soc. (2020), Art. ID 3970903, 8 pp.
  20. A. Wongcharoen, A. Thatsatian, S.K. Ntouyas, J. Tariboon, Nonlinear fractional q-difference equation with fractional Hadamard and quantum integral nonlocal conditions. J. Funct. Spaces 2020, Art. ID 9831752, 10 pp.
  21. Z. Qin, S. Sun, Z. Han, Multiple positive solutions for nonlinear fractional q-difference equation with p-Laplacian operator, Turkish J. Math. 46 (2022), 638-661.
  22. N. Allouch, J.R. Graef, S. Hamani, Boundary value problem for fractional q-difference equations with integral conditions in Banach spaces, Fractal and Fractional, (2022), 6(5):237.
  23. A. Alsaedi, H. Al-Hutami, B. Ahmad, R.P. Agarwal, Existence results for a coupled system of nonlinear fractional q-integro-difference equations with q-integral coupled boundary conditions. Fractals 2022, 30, 2240042.
  24. R. P. Agarwal, H. Al-Hutami, B. Ahmad, A Langevin-type q-variant system of nonlinear fractional integro-difference equations with nonlocal boundary conditions, Fractal Fract. 2022, 6 (1), 45.
  25. , R. P. Agarwal, B. Ahmad, H. Al-Hutami, A. Alsaedi, Existence results for nonlinear multi-term impulsive fractional q-integro-difference equations with nonlocal boundary conditions, AIMS Math. 8 (2023), 19313–19333.
  26. A. Alsaedi, B. Ahmad, H. Al-Hutami, B. Alharbi, Investigation of hybrid fractional q-integro-difference equations supplemented with nonlocal q- integral boundary conditions, Demonstr. Math. 56 (2023), dema–2022–0222.
  27. M.A. Krasnoselskii, Two remarks on the method of successive approximations, Usp. Mat. Nauk. 10 (1955) 123-127.
  28. A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
  29. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
  30. M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Lecture Notes in Mathematics 2056, Springer-Verlag, Berlin, 2012.
DOI: https://doi.org/10.2478/auom-2024-0026 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 5 - 32
Submitted on: Sep 15, 2023
Accepted on: Dec 24, 2023
Published on: Oct 17, 2024
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Boshra Alharbi, Ahmed Alsaedi, Ravi P. Agarwal, Bashir Ahmad, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.