Have a personal or library account? Click to login
On Boyd-Wong type multivalued contractions and solvability of (k − ~)-Hilfer fractional differential inclusions Cover

On Boyd-Wong type multivalued contractions and solvability of (k − ~)-Hilfer fractional differential inclusions

Open Access
|Jul 2024

References

  1. S. Naz, M.N. Naeem, On the generalization of κ-fractional Hilfer-Katugampola derivative with Cauchy problem, Turk. J. Math., 45, (2021), 110–124.
  2. Y.C. Kwun, G. Farid, W. Nazeer; S. Ullah, S.M. Kang, Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6, (2018), 64946–64953.
  3. K.D. Kucche, A.D. Mali, On the nonlinear (k, ψ )-Hilfer fractional differential equations, Chaos Solitons Fractals, 152, (2021), 111335.
  4. G.A. Dorrego, An alternative definition for the k-Riemann-Liouville fractional derivative, Appl. Math. Sci., 9, (2015), 481–491.
  5. R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 2, (2007), 179–192.
  6. S. Mubeen, G.M. Habibullah, kfractional integrals and applications, Int. J. Contemp. Math. Sci., 7, (2012), 89–94.
  7. D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20, (1969), 458–464.
  8. Tariboon, J., Samadi, A., Ntouyas, S.K. Multi-point boundary value problems for (k, ˚)-Hilfer fractional differential equations and inclusions, Axioms, 11, (2022), 110.
  9. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, (2000).
  10. R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci.Numer. Simul., 44, (2017), 460–481.
  11. R. Almeida, A.B. Malinowska, M. Teresa, T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41(1), (2018), 336–352.
  12. F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst., 13(3), (2020), 709–722.
  13. S. Hamani, M. Benchohra, John R. Graef, Existence results for boundary value problems with nonlinear fractional inclusions and integral conditions,Electron. J. Diff. Equ., 2010(20), (2010), 1–16.
  14. M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal., 87, (2008), 851–863.
  15. S. Belmor, C. Ravichandran, F. Jarad, Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci., 14(1), (2020), 114–123.
  16. S. Belmor, F. Jarad, T. Abdeljawad, M.A. Alqudah, On fractional differential inclusion problems involving fractional order derivative with respect to another function. Fractals, 20(8),(2020), 2040002.
  17. S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30, (1969) 475–88.
  18. T. Abdeljawad, F. Madjidi, F. Jarad, N. Sene, On dynamic systems in the frame of singular function dependent kernel fractional derivatives,Mathematics, 7(10), (2019), 946.
  19. R. Ameen, F. Jarad, T. Abdeljawad, Ulam stability for delay fractional differential equations with a generalized Caputo derivative, Filomat, 32(15), (2018), 5265–5274.
  20. F. Jarad, S. Harikrishnan, K. Shah, K. Kanagarajan, Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative, Discrete Contin. Dyn. Syst., 13(3), (2020) 723–739.
  21. B. Samet, H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving -Caputo fractional derivative, J.Inequal. Appl., 2018(286), (2018), 9.
  22. J. Sousa, C. Vanterler da, K. D. Kucche, E. C. De Oliveira, Stability of ψ-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88, (2019), 73–80.
  23. J. Vanterler da C. Sousa, E. Capelas de Oliveira, Leibniz type rule: ψ-Hilfer fractional operator, Communications in Nonlinear Science and Numerical Simulation, 77, (2019), 305-311.
  24. D.S. Oliveira, E. Capelas de Oliveira, On a Caputo-type fractional derivative, Advances in Pure and Applied Mathematics, 10(2), (2019), 81–91
  25. J.V.C. Sousa, E.C. De Oliveira, On the ψ-Hilfer fractional derivative, Communications in Nonlinear Science and Numerical Simulation, 60, (2018), 72-91.
  26. I. Podlubny, Fractional differential equations, Academic Press, (1999).
  27. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Di erential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, (2006).
  28. E. Mittal, S. Joshi, Note on k-generalized fractional derivative, Discret. Contin. Dyn. Syst., 13, (2020), 797–804.
  29. S.K. Magar, P.V. Dole, K.P. Ghadle, Pranhakar and Hilfer-Prabhakar fractional derivatives in the setting of y-fractional calculus and its applications, Krak. J. Math., 48, 2024, 515–533.
  30. P. Agarwal, J. Tariboon, S.K. Ntouyas, Some generalized Riemann-Liouville k-fractional integral inequalities, J. Ineq. Appl., 2016, (2016), 122.
  31. G. Farid, A. Javed, A.U. Rehman, On Hadamard inequalities for n-times differentiable functions which are relative convex via Caputo k-fractional derivatives, Nonlinear Anal. Forum, 22, (2017), 17–28.
  32. M.K. Azam, G. Farid, M.A. Rehman, Study of generalized type k-fractional derivatives, Adv. Differ. Equ., 2017, (2017), 249.
  33. L.G. Romero, L.L. Luque, G.A. Dorrego, R.A. Cerutti, On the k-Riemann-Liouville fractional derivative, Int. J. Contemp. Math. Sci., 8, (2013), 41–51.
DOI: https://doi.org/10.2478/auom-2024-0023 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 127 - 144
Submitted on: Jun 12, 2023
Accepted on: Oct 30, 2023
Published on: Jul 10, 2024
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Marija Paunovic, Babak Mohammadi, Vahid Parvaneh, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.