Have a personal or library account? Click to login
On generalized osculating-type curves in Myller configuration Cover
By: Zehra İşbilir and  Murat Tosun  
Open Access
|Jul 2024

References

  1. S. Breuer, D. Gottlieb, Explicit characterization of spherical curves, Proc. Amer. Math. Soc., 27(1) (1971), 126–127.
  2. B.-Y. Chen, When does the position vector of a space curve always lie in its rectifying plane? Amer. Math. Monthly, 110(2) (2003), 147–152.
  3. B.-Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Academia Sinica, 33(2) (2005), 77–90.
  4. B.-Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math., 48(2) (2017), 209-–214.
  5. S. Deshmukh, B.-Y. Chen, S. H. Alshammari, On rectifying curves in Euclidean 3-space, Turk. J. Math., 42(2) (2018), 609-–620.
  6. F. Frenet, Sur les courbesá double courbure, J. Math. Pures Appl., (1852), 437–447.
  7. B. Heroiu, Versor fields along a curve in a four dimensional Lorentz space, J. Adv. Math. Stud., 4(1) (2011), 49–57.
  8. K. İlarslan, E. Nešović, M. Petrovic-Torgasev, Some characterizations of rectifying curves in the Minkowski 3-space, Novi Sad J. Math., 33(2) (2003), 23–32.
  9. K. İlarslan, E. Nešović, Timelike and null normal curves in Minkowski space 𝔼31, Indian J. Pure Appl. Math., 35(7) (2004), 881–888.
  10. K. İlarslan, Spacelike normal curves in Minkowski space 𝔼31, Turk. J. Math., 29(2) (2005), 53–63.
  11. K. İlarslan, E. Nešović, On rectifying curves as centrodes and extremal curves in the Minkowski 3-space, Novi Sad J. Math., 37(1) (2007), 53–64.
  12. K. İlarslan, E. Nešović, Some characterizations of rectifying curves in the Euclidean space E4, Turk. J. Math., 32(1) (2008), 21–30.
  13. K. İlarslan, E. Nešović, Some characterizations of null, pseudo null and partially null rectifying curves in Minkowski space-time, Taiwan. J. Math., 12(5) (2008), 1035–1044.
  14. K. İlarslan, E. Nešović, Some characterizations of osculating curves in the Euclidean spaces, Demonstr. Math., 41(4) (2008), 931–940.
  15. K. İlarslan, E. Nešović, Spacelike and timelike normal curves in Minkowski space-time, Publ. Inst. Math., 105 (2009), 111–118.
  16. K. İlarslan, E. Nešović, The first kind and the second kind osculating curves in Minkowski space-time, Compt. Rend. Acad. Bulg. Sci., 62(6) (2009), 677–686.
  17. K. İlarslan, E. Nešović, Some relations between normal and rectifying curves in Minkowski space-time, Int. Electron. J. Geom., 7(1) (2014), 26–35.
  18. K. İlarslan, E. Nešović, Some characterizations of pseudo and partially null osculating curves in Minkowski space-time, Int. Electron. J. Geom., 4(2) (2011), 1–12.
  19. Z. İşbilir, M. Tosun, Osculating-type curves with Myller configuration in Euclidean 4-space, (submitted).
  20. Z. İşbilir, M. Tosun, A new insight on rectifying-type curves in Euclidean 4-space, Int. Electron. J. Geom., 16(2) (2023), 644-652.
  21. Z. İşbilir, M. Tosun, Generalized Smarandache curves with Frenet-type frame, Honam Math. J., 46(2) (2024), 181-197.
  22. Ö. Keskin, Y. Yaylı, Rectifying-type curves and rotation minimizing frame ℝn, arXiv Preprint, arXiv:1905.04540, (2019).
  23. G. F. Macsim, A. Mihai, A. Olteanu, Special curves in a Myller configuration, Proceedings of the 16th Workshop on Mathematics, Computer Science and Technical Education, Department of Mathematics and Computer Science, 2 (2019), 78–84.
  24. G. F. Macsim, A. Mihai, A. Olteanu, On rectifying-type curves in a Myller configuration, Bull. Korean Math. Soc., 56(2) (2019), 383–390.
  25. G. F. Macsim, A. Mihai, A. Olteanu, Curves in a Myller configuration, International Conference on Applied and Pure Mathematics (ICAPM 2017), Ia¸si, November 2-5, 2017.
  26. R. Miron, Geometria unor configurat¸ii Myller, Analele S¸t. Univ., VI(3) (1960).
  27. R. Miron, The Geometry of Myller Configurations. Applications to Theory of Surfaces and Nonholonomic Manifolds, Romanian Academy, (2010).
  28. T. Otsuki, Di erential Geometry, Asakura Publishing Co. Ltd. Tokyo (1961).
  29. J. A. Serret, Sur quelques formules relatives à la théorie des courbes à double courbure, J. Math. Pures Appl., (1851), 193–207.
  30. E. M. Solouma, Characterization of Smarandache trajectory curves of constant mass point particles as they move along the trajectory curve via PAF, Bull. Math. Anal. Appl., 13(4) (2021), 14–30.
  31. Y. C. Wong, A global formulation of the condition for a curve to lie in a sphere, Monatsh. Math., 67 (1963), 363–365.
  32. Y. C. Wong, On an explicit characterization of spherical curves, Proceedings of the American Math. Soc., 34(1) (1972), 239–242.
DOI: https://doi.org/10.2478/auom-2024-0020 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 85 - 98
Submitted on: Jul 29, 2023
Published on: Jul 10, 2024
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Zehra İşbilir, Murat Tosun, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.