References
- S. Breuer, D. Gottlieb, Explicit characterization of spherical curves, Proc. Amer. Math. Soc., 27(1) (1971), 126–127.
- B.-Y. Chen, When does the position vector of a space curve always lie in its rectifying plane? Amer. Math. Monthly, 110(2) (2003), 147–152.
- B.-Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Academia Sinica, 33(2) (2005), 77–90.
- B.-Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math., 48(2) (2017), 209-–214.
- S. Deshmukh, B.-Y. Chen, S. H. Alshammari, On rectifying curves in Euclidean 3-space, Turk. J. Math., 42(2) (2018), 609-–620.
- F. Frenet, Sur les courbesá double courbure, J. Math. Pures Appl., (1852), 437–447.
- B. Heroiu, Versor fields along a curve in a four dimensional Lorentz space, J. Adv. Math. Stud., 4(1) (2011), 49–57.
- K. İlarslan, E. Nešović, M. Petrovic-Torgasev, Some characterizations of rectifying curves in the Minkowski 3-space, Novi Sad J. Math., 33(2) (2003), 23–32.
- K. İlarslan, E. Nešović, Timelike and null normal curves in Minkowski space 𝔼31, Indian J. Pure Appl. Math., 35(7) (2004), 881–888.
- K. İlarslan, Spacelike normal curves in Minkowski space 𝔼31, Turk. J. Math., 29(2) (2005), 53–63.
- K. İlarslan, E. Nešović, On rectifying curves as centrodes and extremal curves in the Minkowski 3-space, Novi Sad J. Math., 37(1) (2007), 53–64.
- K. İlarslan, E. Nešović, Some characterizations of rectifying curves in the Euclidean space E4, Turk. J. Math., 32(1) (2008), 21–30.
- K. İlarslan, E. Nešović, Some characterizations of null, pseudo null and partially null rectifying curves in Minkowski space-time, Taiwan. J. Math., 12(5) (2008), 1035–1044.
- K. İlarslan, E. Nešović, Some characterizations of osculating curves in the Euclidean spaces, Demonstr. Math., 41(4) (2008), 931–940.
- K. İlarslan, E. Nešović, Spacelike and timelike normal curves in Minkowski space-time, Publ. Inst. Math., 105 (2009), 111–118.
- K. İlarslan, E. Nešović, The first kind and the second kind osculating curves in Minkowski space-time, Compt. Rend. Acad. Bulg. Sci., 62(6) (2009), 677–686.
- K. İlarslan, E. Nešović, Some relations between normal and rectifying curves in Minkowski space-time, Int. Electron. J. Geom., 7(1) (2014), 26–35.
- K. İlarslan, E. Nešović, Some characterizations of pseudo and partially null osculating curves in Minkowski space-time, Int. Electron. J. Geom., 4(2) (2011), 1–12.
- Z. İşbilir, M. Tosun, Osculating-type curves with Myller configuration in Euclidean 4-space, (submitted).
- Z. İşbilir, M. Tosun, A new insight on rectifying-type curves in Euclidean 4-space, Int. Electron. J. Geom., 16(2) (2023), 644-652.
- Z. İşbilir, M. Tosun, Generalized Smarandache curves with Frenet-type frame, Honam Math. J., 46(2) (2024), 181-197.
- Ö. Keskin, Y. Yaylı, Rectifying-type curves and rotation minimizing frame ℝn, arXiv Preprint, arXiv:1905.04540, (2019).
- G. F. Macsim, A. Mihai, A. Olteanu, Special curves in a Myller configuration, Proceedings of the 16th Workshop on Mathematics, Computer Science and Technical Education, Department of Mathematics and Computer Science, 2 (2019), 78–84.
- G. F. Macsim, A. Mihai, A. Olteanu, On rectifying-type curves in a Myller configuration, Bull. Korean Math. Soc., 56(2) (2019), 383–390.
- G. F. Macsim, A. Mihai, A. Olteanu, Curves in a Myller configuration, International Conference on Applied and Pure Mathematics (ICAPM 2017), Ia¸si, November 2-5, 2017.
- R. Miron, Geometria unor configurat¸ii Myller, Analele S¸t. Univ., VI(3) (1960).
- R. Miron, The Geometry of Myller Configurations. Applications to Theory of Surfaces and Nonholonomic Manifolds, Romanian Academy, (2010).
- T. Otsuki, Di erential Geometry, Asakura Publishing Co. Ltd. Tokyo (1961).
- J. A. Serret, Sur quelques formules relatives à la théorie des courbes à double courbure, J. Math. Pures Appl., (1851), 193–207.
- E. M. Solouma, Characterization of Smarandache trajectory curves of constant mass point particles as they move along the trajectory curve via PAF, Bull. Math. Anal. Appl., 13(4) (2021), 14–30.
- Y. C. Wong, A global formulation of the condition for a curve to lie in a sphere, Monatsh. Math., 67 (1963), 363–365.
- Y. C. Wong, On an explicit characterization of spherical curves, Proceedings of the American Math. Soc., 34(1) (1972), 239–242.