Have a personal or library account? Click to login
A new approach to (dual) Rickart modules via isomorphisms Cover

References

  1. T. Amouzegar, A. R. Moniri Hamzekolaee, Lifting modules with respect to imgaes of a fully invariant submodule, Novi Sad J. Math. 50(2) (2020), 41–50.
  2. E. P. Armendariz, A note on extensions of Baer and PP-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
  3. M. Behboodi, A. Daneshvar, M. R. Vedadi, Virtually semisimple modules and a generalization of the Wedderburn-Artin theorem, Comm. Algebra, 46(6) (2017), 2384–2395.
  4. G. M. Bergman, Hereditary commutative rings and centres of hereditary rings, Proc. London Math. Soc. 23(3) (1971), 214–236.
  5. G. F. Birkenmeier, J. Y. Kim, J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), 25–42.
  6. G. F. Birkenmeier, J. Y. Kim, J. K. Park, Principally quasi-Baer rings. Comm. Algebra 29(2) (2001), 638-660.
  7. G. F. Birkenmeier, J. K. Park, Triangular matrix representations of ring extensions, J. Algebra 265(2) (2003), 457–477.
  8. A. K. Chaturvedi, Iso-retractable modules and rings, Asian-European J. Math. 12(1) (2019), 1950013.
  9. N. V. Dung, A. Faccini, Direct summands of serial modules, J. Pure Appl. Algebra 133 (1998), 93–106.
  10. A. A. Garcia, C. C. Castilla, T. G. P. Quijano, I. F. V. Montalvo, On co-isosimple modules and co-isoradical of modules, Comm. Algebra, 48(6) (2020), 2608–2615.
  11. Y. Hirano, I. Mogami, Modules whose proper submodules are non-hopf kernels, Comm. Algebra. 15(8) (1987), 1549–1567.
  12. D. Keskin Tutuncu, R. Tribak, On dual Baer modules, Glasgow J. Math. 52 (2010), 261–269.
  13. G. Lee, M. Medina-Barcenas, Finite ∑-Rickart modules, arXiv:2102.01014v1 [math.RA].
  14. G. Lee, S. T. Rizvi, C. S. Roman, Rickart modules, Comm. Algebra 38 (2010), 4005–4027.
  15. G. Lee, S. T. Rizvi, C. S. Roman, Dual Rickart modules, Comm. Algebra 39 (2011), 4036–4058.
  16. A. R. Moniri Hamzekolaee, T. Amouzegar, H-supplemented modules with respect to images of a fully invariant submodule, Proyecciones J. Math. 4(1) (2021), 33–46.
  17. A. R. Moniri Hamzekolaee, A. Harmanci, Y. Talebi, B. Ungor, A new approach to H-supplemented modules via homomorphisms, Turkish J. Math. 42(4) (2018), 1941–1955.
  18. S. T. Rizvi, C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra 32(1) (2004), 103–123.
  19. Y. Talebi, N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra 30(3) (2002), 1449–1460.
  20. O. Tasdemir, F. Karabacak, Generalized SIP -modules, Haccet. J. Math. Stat. 48(4) (2019), 1137–1145.
  21. O. Tasdemir, F. Karabacak, Generalized SSP -modules, Comm. Algebra 48(3) (2020), 1068–1078.
DOI: https://doi.org/10.2478/auom-2024-0016 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 5 - 18
Submitted on: May 8, 2023
Accepted on: Oct 25, 2023
Published on: Jul 10, 2024
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 S. Asgari, Y. Talebi, A. R. Moniri Hamzekolaee, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.