References
- T. Amouzegar, A. R. Moniri Hamzekolaee, Lifting modules with respect to imgaes of a fully invariant submodule, Novi Sad J. Math. 50(2) (2020), 41–50.
- E. P. Armendariz, A note on extensions of Baer and PP-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
- M. Behboodi, A. Daneshvar, M. R. Vedadi, Virtually semisimple modules and a generalization of the Wedderburn-Artin theorem, Comm. Algebra, 46(6) (2017), 2384–2395.
- G. M. Bergman, Hereditary commutative rings and centres of hereditary rings, Proc. London Math. Soc. 23(3) (1971), 214–236.
- G. F. Birkenmeier, J. Y. Kim, J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), 25–42.
- G. F. Birkenmeier, J. Y. Kim, J. K. Park, Principally quasi-Baer rings. Comm. Algebra 29(2) (2001), 638-660.
- G. F. Birkenmeier, J. K. Park, Triangular matrix representations of ring extensions, J. Algebra 265(2) (2003), 457–477.
- A. K. Chaturvedi, Iso-retractable modules and rings, Asian-European J. Math. 12(1) (2019), 1950013.
- N. V. Dung, A. Faccini, Direct summands of serial modules, J. Pure Appl. Algebra 133 (1998), 93–106.
- A. A. Garcia, C. C. Castilla, T. G. P. Quijano, I. F. V. Montalvo, On co-isosimple modules and co-isoradical of modules, Comm. Algebra, 48(6) (2020), 2608–2615.
- Y. Hirano, I. Mogami, Modules whose proper submodules are non-hopf kernels, Comm. Algebra. 15(8) (1987), 1549–1567.
- D. Keskin Tutuncu, R. Tribak, On dual Baer modules, Glasgow J. Math. 52 (2010), 261–269.
- G. Lee, M. Medina-Barcenas, Finite ∑-Rickart modules, arXiv:2102.01014v1 [math.RA].
- G. Lee, S. T. Rizvi, C. S. Roman, Rickart modules, Comm. Algebra 38 (2010), 4005–4027.
- G. Lee, S. T. Rizvi, C. S. Roman, Dual Rickart modules, Comm. Algebra 39 (2011), 4036–4058.
- A. R. Moniri Hamzekolaee, T. Amouzegar, H-supplemented modules with respect to images of a fully invariant submodule, Proyecciones J. Math. 4(1) (2021), 33–46.
- A. R. Moniri Hamzekolaee, A. Harmanci, Y. Talebi, B. Ungor, A new approach to H-supplemented modules via homomorphisms, Turkish J. Math. 42(4) (2018), 1941–1955.
- S. T. Rizvi, C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra 32(1) (2004), 103–123.
- Y. Talebi, N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra 30(3) (2002), 1449–1460.
- O. Tasdemir, F. Karabacak, Generalized SIP -modules, Haccet. J. Math. Stat. 48(4) (2019), 1137–1145.
- O. Tasdemir, F. Karabacak, Generalized SSP -modules, Comm. Algebra 48(3) (2020), 1068–1078.