References
- Acar, T.; Aral, A.; Raşa, I. Modified Bernstein-Durrmeyer operators, Gen. Math. 2014, 22(1), 2741.
- Altomare, F.; Campiti, M. Korovkin-Type Approximation Theory and its Applications, Walter de Gruyter, Berlin, New York, 1994.
- Aral, A.; Ulusoy, G.; Deniz, E. A new construction of Szász-Mirakyan operators. Numer. Algor. 2018, 77, 313326.
- Ansari, K.J.; Mursaleen, M.; Shareef K.P., M.; Ghouse, M. Approximation by modified Open Access KantorovichSzász type operators involving Charlier polynomials, Adv. Difference Equ. 2020 (2020), 192.
- Ansari, K.J.; Mursaleen, M.; Al-Abeid, A.H. Approximation by Chlodowsky variant of Szsz operators involving Sheffer polynomials, Adv. Oper. Theory, 2019, 4 (2), 321–341.
- Aslan, R. Some Approximation Results on λ-Szasz-Mirakjan-Kantorovich Operators, Fundam. J. Math. Appl., 2021, 4(3), 150–158.
- Bernstein, S. N. Demonstration du theoreme de Weierstrass, fondee sur le calculus des piobabilitts, Commun. Soc. Math., Kharkow, 13, 1–2, 1913.
- Betus, Ö.; Usta, F. Approximation of functions by a new types of Gamma operator, Numer. Methods Partial Differential Equations, (2020), https://doi.org/10.1002/num.22660.
- Cai, Q.B.; Ansari, K.J.; Usta, F. A Note on New Construction of Meyer-König and Zeller Operators and its Approximation Properties, Mathematics, 9 (2021), 3275.
- Cardenas-Morales, D.; Garrancho, P.; Raşa, I. Bernstein-type operators which preserve polynomials. Comput. Math. Appl. 2011, 62, 158163.
- Çiçek, H.; Izgi, A. Approximation by Modified Bivariate Bernstein-Durrmeyer and GBS Bivariate Bernstein-Durrmeyer Operators on a Triangular Region, 2022, 5(2), 135–144.
- Erençin, A.; Raşa, I. Voronovskaya type theorems in weighted spaces, Numer. Funct. Anal. Optim. 37(12) (2016), 15171528.
- Gadjiev, A.D.; The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogous to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR 218 (1974), 1001–1004. Also in Soviet Math. Dokl. 15 (1974), 14331436 (in English).
- Gadjiev, A.D.; Theorems of the type of P. P. Korovkins theorems, Math. Zametki 20(5):781786 (in Russian); Math. Notes 20(56) (1976), 995–998 (Engl. trans.).
- Gonska, H; Pitul, P.; Raşa, I. General King-type operators, Results Math., 53 (34) (2009), 279286.
- Holhoş, A. Quantitative estimates for positive linear operators in weighted spaces, Gen. Math. 16(4) (2008), 99110.
- King, P.J. Positive linear operators which preserve x2, Acta. Math. Hungar. 99(3) (2003), 203208.
- Korovkin, P.P. Linear Operators and Approximation Theory, Hindustan Publishing Corp., Delhi, India, 1960.
- Lupaş, A.; Müller, M. Approximations eigenschaften der Gamma opera-toren, Math. Zeitschr. 98 (1967), 208–226.
- Usta, F. Approximation of functions by a new construction of Bernstein Chlodowsky operators: Theory and applications. Numer. Methods Partial Differential Equations. 2021, 37(1), 782–795.
- Usta, F. A new approach on the construction of Balázs Type operators. Math. Slovaca, accepted.
- Usta, F. On Approximation Properties of a New Construction of Baskakov Operators. Adv. Difference Equ. 2021, 2021, 269.
- Usta, F.; Betus, Ö. A new modification of Gamma operator with a better error estimation, Linear Multilinear Algebra, (2020), 1–12, https://doi.org/10.1080/03081087.2020.1791033.
- Usta, F. Approximation of functions by new classes of linear positive operators which fix {1, φ} and {1, φ2}, An. Stiint. Univ. Ovidius Constanta, Ser. Mat. 2020, 28(3), 255265.
- Özçelik, R.; Kara, E. E.; Usta, F.; Ansari, K.J. Approximation properties of a new family of Gamma operators and their applications, Adv. Difference Equ. 2021 (2021), 508.
- Tanberk Okumuş, F.; Akyiğit, M.; Ansari, K.J.; Usta, F. On approximation of Bernstein Chlodowsky Gadjiev type operators that fix e−2x, Advances in Continuous and Discrete Models, 2022 2022, 2.
- Qasim, M.; Khan, A.; Abbas, Z.; Qing-Bo, C. A new construction of Lupaş operators and its approximation properties. Adv. Differ. Equ. 2021, 2021, 51.
- Weierstrass, K. Uber die analytische Darstellbarkeit sogenannter willkrlicher Functionen einer reellen Vernderlichen. Sitzungsberichte der Kniglich Preuischen Akademie der Wissenschaften zu Berlin, 1885 (11).
- Zeng, X. M. Approximation properties of gamma operators, J. Math. Anal. Appl. 311(2) (2005), 389401.